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Abstract 

 

This paper develops a model to investigate how the existence of options affects informed investors’ 

incentives to manipulate markets prior to Seasoned Equity Offerings (SEOs). The model identifies a 

key variable influencing the manipulation incentives, intermarket liquidity, induced by the correlation 

of the uninformed orders of options and those of the underlying stock (ρ). The results show that 

manipulation is a dominant strategy only when ρ is low. Using a novel empirical proxy for ρ, the 

correlation of signed Amihud (2002)’s illiquidity measures of options and those of the underlying 

stock (�̂�), a significantly negative relation between �̂� and SEO discounts is found, supporting the 

implications of the model. In addition, return reversals following SEOs are found only when �̂� is low, 

being consistent with the presence of manipulation. 
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I. Introduction 

“Does finance benefit society? Academics’ view of the benefits of finance vastly exceeds societal 

perception” (Luigi Zingales, President of the American Finance Association 2014) 

 

Do options always have positive impact on the market efficiency? I find that the options can be used 

as a manipulation device prior to seasoned equity offerings (SEOs).  

SEOs are known to provide an incentive to manipulate the stock prices in order to get larger SEO 

discount. Previous studies show that SEO firms set offering prices below the market prices and these 

discounts are related to the information asymmetry (Altınkılıç and Hansen (2003); Beatty and Ritter 

(1986); Corwin (2003); Kim and Shin (2004); Mola and Loughran (2004); Rock (1986 )). Other 

studies also show that manipulation prior to SEOs can lead to larger discounts when high information 

asymmetry is present (Gerard and Nanda (1993); Henry and Koski (2010 )). High information 

asymmetry leads to greater SEO discounts since uninformed bidders are concerned about the 

Winner’s Curse problem being present in such an environment (Beatty and Ritter (1986); Corwin 

(2003); Rock (1986 )) and therefore, underwriters and issuing firms increase discounts to make sure 

that they raise enough capital. If informed investors even sell undervalued stocks to manipulate stock 

prices, which can lead to larger discounts, they can buy back shares at lower offering prices, which 

allows them to cover the costs involved with the manipulation and earn profits. Gerard and Nanda 

(1993) develop a model in which informed traders can make profits by manipulating the stock price 

(i.e., even selling undervalued stocks), which leads to greater discounts. They show that informed 

investors are more likely to engage in manipulation when the market is less liquid and the issuance 

size is larger. In a related study, Henry and Koski (2010) present the empirical evidence that 

abnormal short-sellings prior to the issuance increase issue discounts, which is consistent with the 

implication of Gerard and Nanda (1993).  

 In this paper, I develop a model to identify key variable that affects investors’ manipulation 

decisions prior to SEOs and empirically test the implications of the model. Different from existing 
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models, such as the one in Gerard and Nanda (1993), I allow options to be available to investors, and 

investigate how this changes investors’ behavior. It turns out that the likelihood of trading both option 

and the underlying stock in the same direction by uninformed liquidity traders, ρ, is a critical variable 

that affects the optimal behavior of investors1. When ρ is lower, investors have more incentives to 

manipulate prior to SEOs and the prices of SEO stocks become less informative, since ρ affects the 

profit of investors’ trading strategy. As in Kyle’s model, liquidity is one of the most important 

parameter for the informed trading, since high liquidity guarantees better market price and profits. 

Liquidity for bid and ask, however, can be different, that is, there can be asymmetric demand for 

buying and selling the stock. High bid (ask) side liquidity means that there are enough uninformed 

investors who want to buy (sell) the stocks. If the likelihood of buy orders and those of sell orders are 

identical, the market has the highest and symmetric liquidity. With options listed, however, 

intermarket liquidity induced by the correlation of uninformed orders (ρ), which represents the 

easiness of the intermarket trading (i.e. trading in both stock and option), become important. In the 

markets with low intermarket liquidity, intermarket trading in both securities will generate price 

impact (demand shocks), even though each markets are liquid enough. For instances, in the markets 

with high ρ, buying or selling orders in both markets can be easily cleared. In the markets with low ρ, 

however, there will be demand shocks (price impact) in one of the markets, since the uninformed 

order pattern is different. Therefore, ρ determines the incentives of the informed trading, which 

affects price efficiency and SEO discount. 

As ρ decreases, the manipulative (pooling) equilibrium become dominant over the informative 

(separating) equilibrium. The more informed investors actively engage in trading, the more efficient 

the prices are, since the new information is reflected to the price by informed trading. The market 

prices will be most efficient, therefore, when the informed traders participate in both stock and option 

markets. Then, the markets are in fully informative equilibrium, of which both markets are in the 

                                                           
1 ρ can be expressed as the correlation of the uninformed orders of options and those of the underlying stock as 

in the abstract, since the correlation is a linear function of ρ as 2ρ − 1 
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informative (separating) equilibrium2. This strategy, however, is attractive only when the informed 

investors have confidence of not generating demand shock (price impacts) in any markets. If there are 

price impacts (demand shock) in at least one market, the other market should immediately 

acknowledge (Muravyev (JF Forthcoming); Muravyev, Pearson and Paul Broussard (2013 )). 

Therefore, high ρ is required for encouraging the informative trading in both markets, since the 

identical order pattern of informed investors in fully informative equilibrium can be only cleared by 

the identical order pattern of uninformed investors3. In other words, both markets should be liquid 

enough in the same direction, that is, high intermarket liquidity. As ρ decreases, however, due to the 

different order pattern of uninformed investors in two markets, the informed investors’ orders cannot 

be fully executed, which causes demand shocks (price impacts) in at least one market. Therefore, 

informed traders have an incentive to manipulate in one market while trading according to their 

information in the other market, since they can avoid demand shock and get a better price. Then, the 

markets are in partial manipulative equilibrium. By shutting down one channel through which market 

makers abstract information from submitted orders, informed traders will have more opportunities to 

take advantage of their private information, leading to more manipulative equilibriums. Advantage of 

partial manipulative equilibrium is based on the uncertainty of order flows that both correlated and 

uncorrelated uninformed orders can clear the market, which means that the informed investors can 

avoid demand shock regardless of the correlation of uninformed orders. Also, information asymmetry 

remains at high level compared to fully informative equilibrium, which results in larger SEO discount. 

As ρ is close to 0, however, the markets can precisely deduce the price by Bayes’ rule and the profit 

for partial manipulative equilibrium decreases, too. Extreme ρ makes it easier to estimate the stock 

                                                           
2 Options are attractive in many aspects, such as the leverage effect. With budget constraints, participating only 

in the high levered option transaction can be profitable. Many of previous literatures focus on whether the 

informed traders participate in stock or option market; return predictability of the options (Ang, Hodrick, Xing 

and Zhang (2006); Blau, Nguyen and Whitby (2014); Pan and Poteshman (2006); Xing, Zhang and Zhao (2010)) 

and the information share approch (Chakravarty, Gulen and Mayhew (2004); Rourke (2014); Muravyev, 

Pearson and Paul Broussard (2013)). However, both market participation is also feasible even with budget 

constraints, since too much option orders can induce demand shock.  

3 For instances, in fully informative equilibrium, informed investors’ strategy is buying (selling) both stock and 

options. There will not be price impact (demand shock) only when uninformed orders are both correlated selling 

(buying), which will clear the informed orders.  
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price. For extremely low ρ, however, SEOs make the strategy of manipulating both markets dominant, 

of which the markets are in the fully manipulative equilibrium. By sustaining high information 

asymmetry, price is least informative and SEO discount become largest. Although manipulating both 

markets is expensive, manipulators can reduce their total costs by taking advantage of largest SEO 

discounts. In short, small ρ makes hard for the informative trading to avoid price impacts (demand 

shock) and the informed traders rather do manipulation.  

Since options provide enlarged trading strategies (Biais and Hillion (1994)) and leverage effects, 

they are perceived to encourage the informed traders to participate more in market transactions, 

which make the price of a stock become efficient (An, Ang, Bali and Cakici (2014); Chakravarty, 

Gulen and Mayhew (2004); Easley, O'Hara and Srinivas (1998); Hu (2014); Ni, Pan and Poteshman 

(2008); Pan and Poteshman (2006); Rourke (2013); Rourke (2014); Xing, Zhang and Zhao (2010); 

Yang and Zhang (2014 )). As Biais and Hillion (1994) point out, however, options make the price 

discovery mechanisms more complicate to embody the possible interactions among securities (Back 

(1993); Jarrow (1994 )). In a complete market, options are just redundant securities. However, Back 

(1993) posits that information asymmetry makes options no longer redundant and option markets can 

lead the stock market. Easley, O'Hara and Srinivas (1998) also argue that options are attractive to 

informed traders due to their characteristics of allowing highly levered positions and therefore, 

informed investors may prefer option trading rather then stock’s. In short, options provide informed 

traders with an additional channel to take advantage of their private information. However, they also 

allow market makers to have a better clue regarding the true value of the stock. For instances, even 

when informed traders succeed to camouflage their trading in the stock market, market makers might 

be able to abstract the information from the option market (Back (1993)). My model shows that how 

uninformed liquidity traders trade in both markets, which is captured by ρ, plays a critical role in 

determining whether informed investors can veil the information in both markets or not. Furthermore, 

this is the first paper to show that options also have a dark side in terms of market efficiency, 

especially prior to SEOs. 
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Using the correlation of signed Amihud (2002)’s illiquidity measures of options and those of the 

underlying stock as an empirical proxy for ρ, I find supporting empirical evidences that there is a 

negative relation between SEO discounts and ρ̂ , the empirical proxy for ρ. This supports the 

hypothesis that SEOs with low ρ are in the manipulative (pooling) equilibrium. Corwin (2003) finds 

the evidence that large pre-issue negative cumulative abnormal returns (CARs) are followed by larger 

discounts, supporting manipulation hypothesis. Henry and Koski (2010) find similar results. Unlike 

previous studies, results show that a large pre-issue market reaction, measured by |CAR|, lowers 

discounts and enhances efficiency. However, as ρ decreases, large |CAR| isn’t followed by lower 

discounts, which supports the hypothesis that lower ρ leads the market more to the manipulative 

equilibrium. In addition, I find that SEOs with low ρ is followed by larger post-issue abnormal 

returns, being consistent with return reversals after manipulations. 

Easley, O'Hara and Srinivas (1998) argue that high option leverage makes options attractive to 

informed traders. Furthermore, informed traders prefer to participate in option trasactions when the 

option market is more liquid than the stock market. Xing, Zhang and Zhao (2010) present the 

empirical evidences that option implied volatility losses its predictive power when the liqudity in the 

stock market is high. Using a novel methodology in Hasbrouck (1995), Chakravarty, Gulen and 

Mayhew (2004) find the similar results that the information share of options is larger for options with 

high option trading volume compared to the trading volume of the underlying stock. Given that the 

magnitude of ρ can affect the equibilirium, it is possible that the role of option leverage and liquidity 

on the price efficiency can depend on ρ. When ρ is high, the market is more likely to be in the 

informative (separating) eqiliubrium and therefore, the positive role of option leverage and liquidity 

can be diminished. Consistent with this conjecture, I find that option leverage and stock liquidity are 

not closely related to SEO discounts when ρ is high (and therefore, the market is more likely to be in 

the informative (separating) eqilibrium, limiting the role of opton leverage and stock liquidity). 

However, they become more closely related to SEO discounts as ρ decreases. 
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ρ is the parameter related to the cross-market lambda, which is the parameter in multi-security 

Kyle’s model, explaining how the other market order imbalances affect the one market price. There 

are many papers studying cross-market trading (Back and Crotty (2015); Boulatov, Hendershott and 

Livdan (2013); Caballé and Krishnan (1994); Pasquariello and Vega (2015 )). Back and Crotty (2015) 

posit that the cross-market lambda is large and each markets’ return is largely explained by the others. 

Pasquariello and Vega (2015) finds that cross-price impact is significantly negative. However, the 

previous studies focus on the existence of cross-market lambda and their impact. Also, the market 

liquidity measured as the variance of the uninformed orders is thought to be important, but their 

correlation is neglected. This paper provides deep insights on how the correlation of the uninformed 

orders affects the informed trader’s behavior and the market efficiency.  

To the best of my knowledge, this is the first paper to show both theoretically and empirically that 

options and SEOs provide the incentive for the informed investors to manipulate the prices, to get a 

better price and larger SEO discount. This paper sheds light on understanding how the capital market 

is distorted and the tools expected to enhance market efficiency can ruin the markets. This paper is 

organized as follows. Section 2 develops the SEO manipulation model with options listed. Section 3 

presents empirical results following the description of as well as describing the dataset and how we 

construct an empirical proxy for ρ. Section 4 concludes. 

 

II. Theory 

2.1. The model 

SEO manipulation model with options is the extension to one-period Kyle’s model with the concept 

of manipulation in Gerard and Nanda. Following Gerard and Nanda, there are 5 market participants; 

market makers, the informed trader, the uninformed (liquidity/noise) traders, the uninformed bidders, 

and the security issuer. All the market participants are risk neutral and trade both stock and call 

options. For simplicity, it is assumed that there are only European call options in the market. Market 
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makers clear the market after observing the net order flow in both markets. Net order flow is the 

aggregate of the informed and the liquidity traders’ orders. Market makers cannot distinguish where 

the orders come from, but should deduce the true value of the stock given the net order flow. The 

informed traders are given the true value of stock before the secondary market trading occurs. The 

ex-post true liquidation value of stock, Ṽ, has dichotomous values, V+ or V−. X(Ṽ) = (xs, xo) are the 

informed trader’s orders in stock and option market, respectively. For each states, X(V) can be 

X(V+)=(xs
+, xo

+) or X(V−)=(xs
−, xo

−). The liquidity traders’ trading is independent of the true value. 

Their probability distribution of orders in two markets, Ũ=(ũs, ũo), is given as follows. 

Ũ =

  

[
 
 
 
   

(+𝑢𝑠, +𝑢𝑜) 𝑤𝑖𝑡ℎ   𝜌 2⁄

(−𝑢𝑠, −𝑢𝑜) 𝑤𝑖𝑡ℎ   𝜌 2⁄

(+𝑢𝑠, −𝑢𝑜) 𝑤𝑖𝑡ℎ  (1 − 𝜌) 2⁄

(−𝑢𝑠, +𝑢𝑜) 𝑤𝑖𝑡ℎ  (1 − 𝜌) 2⁄

 

ρ is the probability of the identical direction between stock and option uninformed orders. ρ can be 

interpreted as the correlation of the uninformed orders between stock and options, since the cross-

market uninformed order correlation is 2ρ − 1. For high ρ, the liquidity traders tend to simultaneously 

buy (sell) both stock and options. That is, the trading pattern of two markets is correlated. Net order 

flow,Ỹ, is X(Ṽ) + Ũ. The security issuers set the offer price after monitoring the secondary market 

price. The informed bidders demand NI shares and the uninformed bidders do NU shares. Since the 

total number of shares newly issued, q, is more than NI but less than NU, the issuing firms have an 

incentive to discount in order for encouraging the uninformed bidders to participate in the issuance. 

The offer price, P*, is set at the point where the uninformed bidders break even the profit. Therefore, 

the uninformed bidders will always participate in new issue allocation. However, the informed traders 

will avoid the issuance when the stock is overvalued. The number of new shares allocated to the 

informed bidders, αI, and the number of new shares allocated to the uninformed bidders, αU, are given 

as follows. 

𝛼𝐼 = {
0                      𝑤ℎ𝑒𝑛 �̃� = 𝑉−

𝑞 ×
𝑁𝐼

𝑁𝐼+𝑁𝑈
     𝑤ℎ𝑒𝑛 �̃� = 𝑉+,      𝛼𝑈 = {

𝑞                               𝑤ℎ𝑒𝑛 �̃� = 𝑉−

𝑞 ×
𝑁𝑈

𝑁𝐼+𝑁𝑈
=

𝑞

𝜂
      𝑤ℎ𝑒𝑛 �̃� = 𝑉+ 
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< Insert Figure 1> 

Figure 1 presents timeline of the model. After the issuer announces SEO at t=ID−2, trading occurs 

at t=ID−1. At t=ID−2, initial price of the stock, Ps
0, is V−+θ0ΔV where θ0 is the ex-ante 

unconditional probability of V+ and ΔV is V+−V−. Option price is also determined by the probability 

of V+. For simplicity, it is assumed that there are only call options traded. Initial price of the option, 

Po
0, is θ0ΔVK where ΔVK is V+−K and K is the option strikes price, of which the range is between V+ 

and V−. Without loss of generality, θ0 is assumed to be 1/2 for simplicity. At t=ID−1, the liquidity 

traders and the informed traders participate in option and stock transaction and the market makers set 

the price at P=E[Ṽ|Ỹ], accordingly. The informed traders set the amount of orders for maximizing 

their expected profit. The security issuers specified the offer price before the issuance but after the 

secondary market price is set. At t=ID+1, the true value of the stock is revealed and options are 

expired.  

 

2.2. Manipulative vs. Informative strategies 

 What is the manipulation? According to Kyle and Viswanathan (2008), manipulation is defined as 

“any activities undermining economic efficiency both by making prices less accurate and by making 

markets less liquid for risk transfer”. Gerard and Nanda’s concept of manipulation is also consistent 

with Kyle and Viswanathan. When the manipulation occurs, the market is incapable of judging 

anything. Manipulation indicates that the manipulators sell the stock even though the stock is 

undervalued. When the stock is overvalued, there is no incentive to manipulate, but anyway they sell 

the stock. Therefore, the trading pattern is identical regardless of the true value of the stock. Since the 

markets cannot get any information from order flows, information asymmetry is not resolved at all 

and the issuing firm should increase discount. In the model, it is described as pooling equilibrium. The 

informed traders’ trading is expressed as x+ when Ṽ is V+ and x− when Ṽ is V−. In the pooling 

(manipulative) equilibrium, their trading pattern is identical, which means x+= x−. In this equilibrium, 
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although there are incoming sell orders, they cannot say that the sell orders are motivated by the 

overvaluation of the stock.  

 Without manipulation, the trading pattern of the informed traders is different, depending upon Ṽ; x+ 

≠x−. It is well described in Kyle’s model. In the equilibrium, the informed traders transaction is a 

linear function of Ṽ, which means that the trading pattern is mutually exclusive depending on Ṽ. It is 

plausible in the reality, since the informed traders naturally buy (sell) the securities when undervalued 

(overvalued). Also, if the securities are severely undervalued (overvalued), they will buy (sell) more. 

In my model, the trading pattern in the informative (separating) equilibrium is similar to Kyle’s. The 

only difference is that unlike Kyle’s model, the liquidation value of the stock is dichotomic. Due to 

the restrictive assumption, the transaction amounts in each states are bind each other. In Kyle model, 

since all the variables are continuous real number, the range of net order flow is real number, too. 

However, since Ṽ is binary and the uninformed trader’s orders are assumed to be discrete, the range of 

net order flows is also discrete. It is well described in Figure 2. Panel A of Figure 2 is the net order 

flows in the informative (separating) equilibrium and Panel B of Figure 2 is those in the manipulative 

(pooling) equilibrium, without options. Although x and u is real number, their levels are discrete 

depending on Ṽ. In the informative equilibrium, since there are two possible X(Ṽ) and two possible 

uninformed orders, there are 4 possible net order flows. If all the four net order flow values are 

different, market makers immediately track back the paths and identify the true value. Therefore, the 

informed traders should make some of the net orders identical in order for camouflaging their private 

information as x+=x−+2u. In the reality, the informed traders cannot infinitely buy (sell), since by 

doing so, they will generate demand shock (price impact). That is, their trading pattern in each states 

is bind. The gap between x+ and x− is widen as u increases, that is, the informed traders can buy (sell) 

more when undervalued (overvalued) as the uninformed investors trade enough. This is consistent 

with the previous literatures that the informed traders actively engage in trading if there is high 

liquidity and vigorous trading activities (Back (1992); Back (1993); Easley, O'Hara and Srinivas 

(1998); Kyle (1985 )). In the informative strategy, there could be three different order flows. If 
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Ỹ=x++u (x−−u), there is positive (negative) demand shock and the market makers are immediately 

aware of the true value as V+ (V−). When Ỹ=x+−u=x−+u, there is no demand shock and market 

makers should deduce the price based on Bayes’ rule. This is the case when the buy (sell) orders from 

the informed traders are offset by the sell (buy) orders from the uninformed traders. 

In the manipulative (pooling) equilibrium (Panel B of Figure 2), trading is restricted as x+=x−. Since 

net order flow is solely determined by the liquidity trader’s orders, there is no direct information on 

the true stock value. This strategy is normally not profitable unless price momentum exists in multi-

period model. However, if there is SEO or option, it could be attractive. Manipulative strategy has an 

advantage as they can camouflage their private information. Of course, there is a loss on secondary 

market trading, however, since they can make the market less efficient, there is more profit from the 

larger issue discount. Furthermore, even without SEO, they can manipulate the price with option 

while do informative trading in stock market and vice versa. Although there is a loss in the market in 

the manipulative equilibrium, they can earn more in the informative trading with preferable price. 

Therefore, the informed traders have an incentive to manipulate the market in the presence of SEO 

and options. 

 With options, the informed traders have two different choices in each markets; manipulating stock or 

option, or both or not. That is, the possible number of equilibria are 4, which are combinations of 

manipulating stock or not and manipulating options or not. In short, there are fully informative, partial 

stock/option manipulative, and fully manipulative equilibrium. Si denotes each equilibrium. 

Definition 1 (Definition of Manipulative and Informative strategies) There are two possible 

strategies for each securities; informative (separating) and manipulative (pooling) strategy. The 

informed orders are restricted as x+=x−+2u in the informative strategy and as x+=x− in the 

manipulative strategy. There are total four equilibria in the market; fully informative (S1), partial 

Option/Stock manipulative (S2/S3), and fully manipulative (S4) equilibrium. Each equilibria are defined 

as 

S1: Fully Informative Equilibrium 

Stock Informative (xs
+=xs

−+2us) and Option informative (xo
+=xo

−+2uo) 

S2: Partial Option Manipulative Equilibrium 

Stock Informative (xs
+=xs

−+2us) and Option Manipulative (xo
+=xo

−)  

S3: Partial Stock Manipulative Equilibrium 
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Stock Manipulative (xs
+=xs

−) and Option Informative (xo
+=xo

−+2uo) 

S4: Fully Manipulative Equilibrium 

Stock Manipulative (xs
+=xs

−) and Option Manipulative (xo
+=xo

−) 

With options, there are 8 possible net order flows as in Figure 3. To camouflage their trading and 

private information, the informed traders bind some of the net order flows depending on the 

equilibrium. Therefore, the number of different net order flows diminishes as in Figure 4. The 

conditional distribution of net order flows and true stock value depends upon each equilibrium. 

The model doesn’t consider price momentum, but the previous studies focus on the manipulation 

based on price momentum. Jarrow (1992) proves that manipulation is possible when there is price 

momentum or positive feedback effect. When the firm size is small, information asymmetry is severe, 

and markets are suspicious about the firm, not so much amounts of sell orders can make the market 

panic and stock price plunges. Then, manipulators get the profits by purchasing the stock at a 

giveaway price with small cost. With price momentum, the manipulators can generate more profit 

besides SEOs. Therefore, there is two channel for the manipulation; SEO discount and price 

momentum. However, since price momentum makes manipulation possible regardless of SEOs, I 

focus on only SEOs and option. It is expected that manipulation would be more feasible with price 

momentum.  

 

2.3.Market price and Discount 

Market price and the offer price is efficiently specified conditional on net order flows under each 

equilibrium in Figure 4. If there is a demand shock at least one market, the true value is immediately 

unveiled and both prices are adjusted to the new information. For example, in Panel A of Figure 4, 

when Ỹ=(xs
+−us, xo

++uo), although there is no demand shock in the stock market, the positive demand 

shock on option fully reveals the true value as V+. After observing net order flow, market makers infer 

the price by estimating the conditional probability of V+ which is a function of ρ. The Bayes’ rule is 

applied to the price estimation process. The conditional probability of V+ ,θ1, is 
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 θ1(Ỹ, Si) = Prob(Ṽ = V+|Ỹ, Si) =
Prob(Ṽ = V+) ⋅ f(Ỹ|Ṽ = V+)

Prob(Ṽ = V+) ⋅ f(Ỹ|Ṽ = V+) + Prob(Ṽ = V−) ⋅ f(Ỹ|Ṽ = V−)
 (1) 

 

The conditional distribution of net order flow, f(Ỹ|Ṽ), is estimated using order distribution in Figure 3 

and Figure 4. Since Ṽ is dichotomic, stock and option price are given as 

 Ps|Ỹ,Si =E[Ṽ|Ỹ,Si]=V−+ θ1ΔV,     Po|Ỹ,Si = E [(Ṽ−K)+|Ỹ,Si] = θ1ΔVK (2) 

   

The price is identical to its conditional expected value since market makers are competitive4. The 

offer price and discount is calculated similarly. The expected profit of the uninformed bidders for 

participating in the issuance is E[αU(Ṽ − P∗)|Ỹ, Si]. The offer price is set at the break-even, that is,  

 P∗|Si =
E[αUṼ|Ỹ, Si]

E[αU|Ỹ, Si]
= E[Ṽ|Ỹ, Si] +

Cov(αU, Ṽ|Ỹ, Si)

E[αU|Ỹ, Si]
 (3) 

   

The expected (offer) price conditional on the true value of the stock can be obtained accordingly.  

 E[P|Ṽ, Si] = ∑P|Yj, Si × f(Ỹ = Yj|Ṽ, Si)

j

 (4) 

   

The expected prices have the form as 

 E[Ps|V+,Si]=V+−ε(Si)ΔV,           E[Ps|V−,Si]=V−+ε(Si)ΔV  

 E[Po|V+,Si]=(1−ε(Si))ΔVK,       E[Po|V−,Si]=ε(Si)ΔVK (5) 

 E[P*|V+,Si]= V+−ε’(Si)ΔV,         E[P*|V−,Si]= V−+ 
ε′(Si)

𝜂
ΔV  

   

ε and ε’ are specified later. 

 

2.4. Equilibrium 

 Following Kyle (1985) and Kyle and Vila (1991), the equilibrium should satisfy profit maximization 

and market efficiency condition. Additionally, since there are more equilibria other than the 

informative equilibrium, beliefs off-the-equilibrium path should be specified (Gerard and Nanda 

(1993); Kreps and Wilson (1982 )). This is similar to the dynamic game with incomplete information 

                                                           
4 If there is only one market maker, it is required to solve the utility maximization problem to the market maker. 

However, I assume that the market makers are competitive and their expected profit is set to be zero, as seller’s 

problem in the competitive market. 
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or signaling game. For a given equilibrium, the informed traders (senders) should optimize their 

trading choices to maximize the profit. After observing the net order flows, the market makers 

(receivers) will response to maximize their utility, that is, set the price based on their belief. However, 

since the market makers are competitive, their utility maximization problem is replaced by the zero 

profit condition. This indicates that the stock and option are priced at their fair (expected) value. 

Finally, there should be no incentives for the informed traders defecting to the information set off the 

equilibrium. These three processes are recursively interacted each other, and form a sequential Nash 

equilibrium.  

 

Definition 2. (Definition of the equilibrium) The equilibrium is the sets of a pair X, P satisfying the 

three conditions: 1) Profit maximization; E[Π(X,P)|�̃�,Si] ≥ E[Π(X’,P)|�̃�,Si], 2) Market efficiency; 

P(𝐘)=E[�̃�|𝐘,Si], and 3) No defection; E[Π(Si)|�̃�,Si] ≥ E[Π(S−i)|�̃�,Si] 

The expected profit conditional on Ṽ is  

E[Π(X, P)|Ṽ, Si] = {  Π
+ = Π−  𝑤ℎ𝑒𝑛  Π+ = Π−

0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        
 

where Π+=E[(V+−Ps)xs++(V+−K−Po)xo++αI(V+−P*)|V+,Si] 

Π− =E[(V−−Ps)xs
−+(−Po)xo

−|V−,Si] 

Π+ and Π− are the profit function the informed traders try to maximize, however, the final expected 

profit is a Dirac delta function presented in Panel A, B of Figure 5 for one asset and a linear function 

in Panel C of Figure 5 for two assets. In Definition 1, the informed traders’ trading pattern is bind not 

to reveal private information. By doing so, they can get the non-zero profit, otherwise cannot earn 

anything. However, this argument only imposes relative difference between x+ and x−. After 

calculating the expected price, the form of Π+ and Π− are given as 

Π+ =    ε ΔV xs+ + ε ΔVK xo+  + αIε’ 

Π− = −ε ΔV xs
− − ε ΔVK xo

− 

where ε and ε’ are constants, which is proved in the Appendix B. Π+ is monotonically increasing, 

while Π− is decreasing with respect to X+ and X−, respectively. Therefore, the informed traders may 

make the unbounded profit by buying (selling) the infinite securities when the stock is undervalued 
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(overvalued). Of course, the unbounded trading is not feasible. This is due to the fact that Definition 1 

is not sufficient condition for camouflage. It indicates that no matter what values of x, the private 

information is not unveiled as long as the relative distance between x+ and x− is maintained, which is 

not true. In Panel A of Figure 5, xs
* is negative and Π* is positive. Since the informed traders’ trading 

pattern is specified in the equilibrium, the set of net order flows, Y, is also known to the market 

makers. In this case, Y has two elements, xs
*−us and xs

*+us. Let’s suppose that the informed traders 

increase (decrease) xs
* to xs

**. Even in this situation, the relationship between x+ and x− is maintained 

as x+=x−, but the set, Y, has new values, xs
**−us and xs

**+us. Although the market makers believe that 

the informed traders will do the same trading (xs
**) regardless of the true value, they are notified that 

xs
* changes to xs

**. Increases (decreases) in xs
* mean that the informed traders have an incentive to do 

so. That is, it is because they can increase Π+ (Π−) and Ṽ is V+ (V−). Therefore, although the relation in 

Definition 1 is satisfied, the private information will be unveiled unless Π+ and Π− are identical. The 

analogous argument is applied to the informative equilibrium and the cases with options in Figure 5. 

An equilibrium exists when there is only a stock, and multiple equilibrium exists when the option is 

listed. This is consistent with the result in Back (1993), which shows that the uniqueness of the 

equilibrium is not necessarily achieved with derivatives. 

 The four equilibria are not compatible, since the profit off the equilibrium is no different to the profit 

for another equilibrium. It is assumed that the market makers can identify the strategy by observing 

the net order flow. The set of X is different for the different equilibrium and this makes the set of net 

order flows, Y, unique. Therefore, the net order flows itself reveals which strategy the informed 

traders follows and the deviation cannot generate the same net order flow as before. In short, 

Y|Si≠Y|S−i. This is plausible not only in the model, but also in the reality. The market makers have the 

expectation of the net order flow and if it’s suspicious, they will doubt that there is manipulation. 

Hence, without loss of generality, it is safe to assume that the net order flow reveals the strategy. This 

reduces the part of no defection condition as E[Π(S-i)|Ṽ,Si]=E[Π(S-i)] 

 The definition of the equilibrium is modified as Theorem 1. 
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Theorem 1 (Characteristics of the equilibrium) The equilibrium is the sets of a pair X, P satisfying 

the three conditions: 1) Profit maximization; Max E[Π|�̃�,Si] = Π+ = Π- , 2) Market efficiency; P(𝐘) = 

E[�̃�|𝐘,Si], and 3) No defection; E[Π(Si)] ≥ E[Π(S-i)] where  

Π+=E[(V+−Ps)xs
++(V+−K−Po)xo

++αI(V+−P*)|V+,Si] 

Π− =E[(V−−Ps)xs
−+(−Po)xo

−|V−,Si] 

 

2.5. Manipulation without options 

 First, I consider the case when there is no option, for understanding the basic mechanism of the 

manipulation. Some of the assumptions and parameters should be modified. Since only stock exists, 

there are two equilibria; the informative (separating) and the manipulative (pooling) equilibrium. 

Since options are not listed, the distribution of the liquidity order also different. The liquidity orders 

have dichotomic values, us and –us, with the probability of bs and 1-bs, respectively. Since noise 

traders are considered not to have any intention for the direction of the prices, bs is assumed to be 0.5. 

In the informative equilibrium, the true value is unveiled for some net order flows and the expected 

discount is low. In Panel A of Figure 2, net order flows inducing demand shock fully reveal true value 

and there is no discount. For the middle case, information asymmetry is not entirely resolved and 

there will be offer discount. On average, due to the informed traders’ transaction, the clue for the true 

value of the stocks is given to the market and the issuing firm doesn’t have to pay too much in the 

equity market. On the other hand, in the manipulative equilibrium, no information is leaked and new 

information is not updated. Therefore, the price remains at the initial value and the offer price should 

be discounted to attract the uninformed bidders. This argument requires the assumption of competitive 

market makers, who competitively pay the price at its fair value. If we loosen the assumption, 

manipulative sell orders will lower the price since there is nothing to lose for the market makers to 

pay at lower price. Even loosening the assumption, however, the price will not drop as in the 

informative equilibrium, since some investors will absorb the manipulative sell orders if the markets 

have a doubt on manipulation. In the manipulative equilibrium, the discount is enlarged, since the 
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high level of the information asymmetry is maintained, which provides the very incentive to do 

manipulation. Following these arguments, the equilibrium are characterized as follows. 

 

Theorem 2 (Manipulation condition without option) SS1 denotes the informative equilibrium and 

SS2 denotes the manipulative equilibrium. In each equilibria, the conditional expected prices have the 

form of E[P|V+]= V+ − εΔV and E[P|V−]=V ̶  + εΔV, where the price kernel, ε, is bs(1 − bs) for SS1, 

and 1/2 for SS2. The conditional expected offer prices have the form of E[P*|V+]= V+ − ε’ΔV and 

E[P*|V−]= V ̶  + ε’/(ηbs)ΔV for SS1, and E[P*|V+]= E[P*|V−]= V+ − ε’ΔV for SS2. The offer price 

kernel, ε’, is 
𝜼

𝜼𝒃𝒔+(𝟏−𝒃𝒔)
𝝐 for SS1, and 

𝜼

𝜼+𝟏
  for SS2. The equilibrium trading strategy is x+= x−+2us 

=𝒖𝒔 −
𝜶𝑰

𝟐
∙

𝜼

𝜼𝒃𝒔+(𝟏−𝒃𝒔)
 for SS1 and x+= x−=−𝜶𝑰 ∙

𝜼

𝜼+𝟏
 for SS2. The expected profit, E[Π], has the form of 

(
𝜶𝑰

𝟐
∙ 𝝐′ + 𝒖𝒔 ∙ 𝝐)𝜟𝑽  for SS1 and 

𝜶𝑰

𝟐
∙ 𝝐′ ∙ 𝜟𝑽  for SS2. With the assumption of bs=0.5, there is 

manipulation when  

 αI ≥ (1+ 
1

η
 ) us (6) 

   

 Equation (6) is analogous to the equation (Ia) in Gerard and Nanda (1993), which states the condition 

for the existence of the manipulative equilibrium. They prove that the manipulation is profitable when 

the amount of shares issued is enough. For each equilibria, the profit to the informed traders is 

proportional to αI. Interestingly, when there is no SEO, the profit for the manipulation becomes zero. 

That is, manipulation is not beneficial in the absence of SEO. This indicates that in the ordinary 

market, this kind of manipulation is not feasible. Also, when us is large enough, the profit for SS1 

increases, that is, it is less likely that the manipulation is dominant. us represents the liquidity or the 

trading activity. Consistent with Gerard and Nanda (1993), manipulation is more prominent when 

there is large SEO, low liquidity, and high information asymmetry. 

 

2.6. Manipulation with options 

Options provide the informed traders with additional channel to trade but also the market makers 

with the venue for gathering the information. Cross-market uninformed order correlation measured by 

ρ decides advantages and disadvantages to each player. ρ is the probability of the identical direction 

between stock and option uninformed orders. In the previous literatures such as Back (1993), the 

noise traders’ order flows follow bivariate normal distribution with zero mean, since they trade 
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independent of the true value of the stock. However, the distribution has non-zero variance and 

covariance. The uninformed distribution in the model is the simplified version of the conventional 

normal distribution, capturing the bottom line characteristics. When ρ is high, it is more probable for 

the noise traders to make same buy or sell orders in both markets. For example, if they buy the stock 

with high ρ, it is more likely to buy the options, too. On the other hand, when ρ is low, if they buy the 

stock, it is less likely to buy but probably sell the options. The noise traders trading pattern largely 

affects the informed traders’ decision, since it’s the core to camouflage their informed trading. Let’s 

consider the undervaluation of the stocks (V+) and its conditional price in Panel A of Figure 2. The 

informed traders make the x+ market orders. When the uninformed traders simultaneously make the 

buy orders (+us), there are too much buy orders in the market and these positive demand shock 

immediately increases the price as V+. However, if the uninformed traders sells the stocks (−us) and 

absorb the informed buy orders, there is not much left for the market makers to deal with. It depends 

on the market condition, but certainly, the price is less than or equal to V+. Therefore, the informed 

traders can only camouflage when the uninformed orders offset theirs. Things become complicated 

when the options are listed. Now, the informed traders make another market orders of buying the 

options. Let’s consider the fortune case when the uninformed traders sell the stocks and no positive 

demand shock presents in the stock market. If there are no options, this could be favorable situation 

for the informed traders. However, the existence of the options makes the informed traders think more. 

Although there is no positive demand shock in the stock market, the demand shock in the option 

market can unveil the true value and both markets will immediately appreciate the price. Options 

provide the informed traders with the additional channel to exploit their private information, but also 

the market makers with the place to get the new information. In order for succeeding the informative 

trading in both markets, the cross-market trading pattern of the uninformed orders should be identical. 

That is, ρ should be high enough to absorb both stock and option informed orders, simultaneously. 

With small ρ, the informed traders prefer to do manipulation, since the market can easily identify 

their trading intention. Let’s again assume that the stock is undervalued and the informed traders 

make buy orders in both markets. First, assuming that ρ is 1, there are only correlated buy or sell 
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uninformed orders in both markets, equally likely. Therefore, the informed traders have fifty percent 

chances of getting profits and equal chances of nothing. The expected profit is definitely non-zero. 

Assuming that ρ is less than 1, there are non-zero probability of the uncorrelated uninformed orders 

between two markets, that is, if there are uninformed buy orders in one market, uninformed sell orders 

can be made in the other market. To avoid any demand shocks, there should be uninformed sell orders 

in both markets. However, if the cross-market uninformed orders are opposite, there is no way to hide, 

since positive demand shock occurs at least one market. Consequently, as ρ decreases, there is less 

incentive for the informed traders to do informative trading in both markets. On the contrary, small ρ 

is preferable condition for the manipulation. The problem for the informative trading with small ρ is 

that the market makers can get the information from the other market. If the informed traders 

manipulate at least one market, the market makers cannot obtain anything in that channel. Let’s 

assume that the market believes that the informed traders manipulate the option market, but not the 

stock market. Therefore, the market makers have a doubt on the trading in the options market. Same 

situation that the informed traders make buy orders in stock market and the noise traders offset them 

happens, but the informed traders make the sell orders to confuse the market. The problem in this 

example was that the market makers can identify the true value through options even when no 

information is fully revealed in the stock market. However, in this modified case, the market makers 

cannot obtain anything in the option market and the informed traders are able to keep the secret. 

Prices is not appreciated to V+. In short, with small ρ, since the true value can be easily unveiled in the 

informative trading, the informed traders have greater incentives to manipulate at least one market to 

block the channel for the market makers getting additional information. As ρ becomes real small, 

close to 0, even one market manipulation can reveal the information, since the market makers are easy 

to infer the price. In other words, although the informed traders avoid demand shock, the market 

makers can certainly identify the stock price using Bayes’ rule. Therefore, for a extremely small ρ, it’s 

better to manipulate both markets when SEOs present.  

 ρ is exogenously given to the model and its endogenous mechanism is beyond the scope of this paper. 

However, some of the considerations give the clues to the characteristics of ρ. Back (1993) comments 
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that it is natural to have small ρ in the ordinary markets, since some investors only trade in the stock 

markets, options are used for the hedge, transaction costs are different, and the tax effect exists. That 

is, to understand how ρ forms, it is required to analyze the different types of the investors and their 

incentives. There are three different types of the uninformed investors; speculators, hedgers, and 

arbitrageurs. First, speculator’s trading patterns are classified as delta and vega related trading. Delta 

trading is based on the direction of the stock. Delta speculators could be informed traders, uninformed 

manipulators (Allen and Gale (1992); Vitale (2000 )), and sentiment investors (Baker and Wurgler 

(2006 )). Unless they are informed, uninformed delta trading will increase ρ. Vega trading is based on 

the volatility of the stock (Ni, Pan and Poteshman (2008); Rourke (2014 )). It is impossible to bet on 

the volatility of the stock without derivatives. Options provide unique instrument for volatility trading. 

Option value is an increasing function of underlying stocks’ volatility. Vega trading strategy is 

purchasing both call and put options with same strike prices or options with delta hedged underlying 

stocks. The key element in the trading is that any directional movement of the stock should be 

eliminated. Therefore, whether informed or not, vega traders will decrease ρ. If small ρ is induced by 

vega trading, ρ may be a function of information asymmetry since high volatility has a positive 

correlation with asymmetric information. Finally, hedger and arbitrageur also lower ρ. As Back (1993) 

argues, the hedger trades in the opposite direction between two securities, that is, incurring small ρ. 

Therefore, there is the clientele effect, that is, ρ could be cross-sectionally variant depending on the 

characteristics of the investors. In short, due to the nature of the uninformed traders, it is natural to 

have small ρ. 

 

Assumption 1 ρ, the probability of the identical direction of the uninformed orders between stock and 

option, is assumed to be less than or equal to 1/2.  

 

 ρ less than 1/2 means that the correlation of the uninformed traders orders between stock and options 

is negative, which is consistent with Back (1993). Similar to the manipulation without option, the 

equilibrium characteristics are specified in Theorem 3.  
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Theorem 3 (Equilibrium with options) In each equilibria, the conditional expected prices have the 

form of E[P|V+]= V+ − εΔV and E[P|V−]=V ̶  + εΔV. The conditional expected offer prices have the 

form of E[P*|V+]= V+ − ε’ΔV and E[P*|V−]= V ̶  + ε’/ηΔV. The price kernel (ε), the offer price kernel 

(ε’), equilibrium-trading strategy (x), and the expected profit are specified as follows. 

S1: Fully Informative Equilibrium  

ε(S1)=ρ/4,   ε′(S1)= 2 ∙
η

η+1
∙ ε(S1), 

xs
+ = −

ΔVK

ΔV
xo

+ + (us + uo
ΔVK

ΔV
−

αI

2
∙
ε′

ε
 ),    

Π(S1) = (
αI

2
∙ ε′ + (us + uo

ΔVK

ΔV
) ∙ ε)ΔV =

ρ

4
[A + us + δuo]ΔV  

S2: Partial Option Manipulative Equilibrium  

ε(S2)=ρ(1 − ρ), ε′(S2)= 
η

2
∙

η+1

(η−1)2ε+η
∙ ε(S2), 

xs
+ = −

ΔVK

ΔV
xo

+ + (us −
αI

2
∙
ε′

ε
 ),    

Π(S2) = (
αI

2
∙ ε′ + us ∙ ε) ΔV = ρ(1 − ρ)[A′ + us]ΔV  

S3: Partial Stock Manipulative Equilibrium  

ε(S3)= ε(S2),   ε′(S3)=ε′(S2), 

xs
+ = −

ΔVK

ΔV
xo

+ + (uo
ΔVK

ΔV
−

αI

2
∙
ε′

ε
 ),    

Π(S3) = (
αI

2
∙ ε′ + uo

ΔVK

ΔV
∙ ε)ΔV = ρ(1 − ρ)[A′ + δuo]  

S4: Fully Manipulative Equilibrium  

ε(S4)=1/2,   ε′(S4)= 2 ∙
η

η+1
∙ ε(S4), 

xs
+ = −

ΔVK

ΔV
xo

+ − αI ∙
η

η+1
,    

Π(S4) =
αI

2
∙ ε′ ∙ ΔV =

1

2
 A ΔV  

Where A= αI
η

η+1
,  A’= 

ηαI

4
∙

η+1

(η−1)2ρ(1−ρ)+η
, and δ =

ΔVK

ΔV
 

 

 Depending upon the equilibrium, the expected price is affected by ρ. Since ρ affects the (offer) price 

and the expected profit, it’s the core parameter determining the equilibrium. As referred above, the 

price is linear function of ρ in S1. However, it’s the concave function in S2 and S3. In partial 

manipulative equilibrium, the informed traders can avoid the positive demand shock, but they should 

pay more since the market makers can extract the information. On the contrary, price kernel in S4 is 



21 

independent of any parameter, since no information is leaked. Similar to no options case, fully 

manipulative equilibrium is not feasible unless there is SEO. However, partial manipulative 

equilibrium can have non-zero profit even without SEO, since the manipulators can get the profit in 

the market where they do informative trading. Interestingly, the equilibrium trading amount of the 

stock is a function of the delta equivalent option trading. ΔVK/ΔV is a delta of the options. Therefore, 

the main drivers for the profit is each markets’ liquidity and SEO discount. As stated in the previous 

literatures, the informative trading is beneficial when the liquidity is enough. Interesting point is that 

whether manipulating the options or stock in partial manipulative equilibrium depends on the other 

market’s liquidity. That is, if the stock market is liquid, the option manipulation incentives is 

increased. According to Theorem 1, equilibrium and manipulation condition is specified as follows.  

 

Theorem 4 (Infeasibility of S1) Fully informative Equilibrium (S1) is dominant if and only if the 

following conditions are satisfied. Under Assumption 1, S1 is always inferior. 

(S2): ρ > 1 − 
A+U

4(A′+us)
        and      (S3): ρ > 1 − 

A+U

4(A′+δuo)
        and       (S4): ρ > 2 ∙ 

1

1+U A⁄
 

where U=us+ δuo, δ=ΔVK/ΔV,  A= αI
η

η+1
,  A’= 

𝜂αI

4
∙

𝜂+1

(𝜂−1)2𝜌(1−𝜌)+𝜂
 

 

The proof to the Theorem 4 is trivial. A′ is a function of ρ. Under Assumption 1, A′ is monotonically 

decreasing function of ρ. Then, right-hand-side of inequalities decreases as ρ increases. Therefore, it 

is enough to check the condition at ρ=1/2. Since at least one condition is not satisfied at ρ=1/2, fully 

informative trading is not feasible when ρ is smaller than 1/2. The theorem provides novel intuition 

that in the ordinary market, the informed traders will not prefer to trade in both markets. It’s too risky 

to trade, since it is easy to reveal their private information. Therefore, with or without SEO, the 

market is in the equilibrium with only one informative trading. Furthermore, A and A′ is the term 

related to the amount of new shares issued. As A and A′ become larger, the above inequalities become 

hard to be satisfied. That is, large SEO stimulates manipulation. These results are summarized in 

Corollary 1. 
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Corollary 1 S1 is always inferior under Assumption 1, since at least one condition is not satisfied at 

ρ=1/2. 

(S2): δuo−us > A        or        (S3): us−δuo > A         or         (S4): (us+δuo)/3 > A 

 

 For every sets of us, uo, δ, and A, at least one of the first two conditions is not satisfied. Since the 

informed traders manipulate or don’t engage in transaction in both markets, at least one market is 

absent of the new information. However, with SEOs, the more severe manipulation, S4, become 

dominant over S2 and S3.  

 

Theorem 5 (Manipulation condition) There is manipulation when the following conditions are 

satisfied. ∂MK/∂αI>0 and ∂MK/∂�̃�𝒌<0 are always satisfied. When 𝐌𝐤 >
𝟏

𝟒
, regardless of ρ, there is 

always manipulation.  

ρ < 
1

2
× [1 − √1 − 4Mk] 

where Mk(𝛼𝐼 , �̃�𝑘) =
[𝑓(𝛼𝐼 , �̃�𝑘) + √𝑓(𝛼𝐼 , �̃�𝑘)

2 + 32𝜂2(𝜂 − 1)(𝜂2 − 1)𝛼𝐼�̃�𝑘]
8(𝜂 − 1)(𝜂2 − 1)�̃�𝑘

⁄ ,    

k = {o, s}  

𝑓(𝛼𝐼 , �̃�𝑘) = 𝜂(𝜂2 − 6𝜂 + 1)𝛼𝐼 − 4𝜂(𝜂 + 1)�̃�𝑘 

�̃�𝑠 = 𝑢𝑠, �̃�𝑜 = 𝛿𝑢𝑜 

 

<Insert Figure 6> 

 

Theorem 5 implies that small ρ is the critical condition stimulating manipulation. In Panel A of 

Figure 6, as ρ decreases, the profits for S2 and S3 also decreases. When ρ is smaller than ρ* which 

makes the inequality become identical, S4 is dominant, that is, manipulation. As in Panel B of Figure 

6, when MK is greater than 1/4, no matter what values of ρ is, there is always manipulation. The 

profits for S1 is always smaller than those for other equilibriums. As documented in Gerard and Nanda 

(1993), large SEO stimulates manipulation. In the above inequality, since ∂MK/∂αI is positive, large αI 

makes the RHS of inequality larger. Furthermore, the option leverage (δ) and liquidity suppress the 
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manipulative trading and make the market more efficient. Since ∂MK/∂�̃�𝑘<0 is always satisfied, high 

option leverage and liquidity make RHS of inequality smaller. In the previous literatures, high option 

leverage encourages the informed traders to participate in the option transaction (Easley, O'Hara and 

Srinivas (1998); Xing, Zhang and Zhao (2010 )), since it provides higher profit for a given amount of 

money invested. Option leverage can be defined as the elasticity of the option price to the stock price, 

that is, how much the option price moves as the stock price changes, which indicates how many 

stocks the options control. As the number of shares controlled by the option increases, the profit 

increases for a given traded option contract. The informed traders are better off by participating in the 

option transactions. If the informed traders manipulate the stock (options) price while doing 

informative trading in the option (stock) market with high leverage, they can generate more profit. 

Liquidity is also a critical parameter determining the informed traders’ behavior. Highly liquid market 

is the venue for the informed traders to trade and has superior market efficiency (Back (1992); Gerard 

and Nanda (1993); Kyle (1985 )). Similar logic can be applied to the liquidity.  

 The manipulators expect the profit in two channels. First, they can get a better price. Of course, in 

fully manipulative equilibrium, there is nothing to earn in secondary market trading and they should 

pay manipulation cost to get a higher discount. In the partial manipulative equilibrium, however, by 

paying manipulation cost only in one market, they don’t have to pay too much in other market. 

Therefore, when they manipulate the option market, they can get a better price in stock market. For 

broader sense, when one market’s informativeness is poor, the informed traders can get a preferable 

price in other market by at least not participating in poor informativeness market. Second, the 

manipulation returns greater SEO discount. SEO provides strong incentive to do manipulation, since it 

is well known that higher information asymmetry induces higher discount. Furthermore, manipulation 

not only worsen the information asymmetry, but also makes doubts on the intention of SEO, which 

reducing the demand for SEO. The demand for SEO is an important factor determining discount. That 

is, in terms of information asymmetry and demand based story, the model in this paper provides fare 

intuition. Consequently, it can be inferred that manipulation prior to SEO will return higher discount 

(Gerard and Nanda (1993)).  
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Theorem 6 (manipulation and SEO discount) The expected discount, which is given as follows, is 

greater for severe manipulation. That is, E[DSCT|S4] ≥ E[DSCT|S3] = E[DSCT|S2] ≥ E[DSCT|S1]. 

Since small ρ stimulates manipulation, there is negative relation between ρ and discount. 

E[DSCT|S1] = 
ρ

4
⋅
η−1

η+1
ΔV 

E[DSCT|S2] = E[DSCT|S3] = 
ρ(1−ρ)

4
⋅

η2−1

(η−1)2ρ(1−ρ)+η
ΔV 

E[DSCT|S4] = 
1

2
⋅

η−1

η+1
ΔV 

 

<Insert Figure 7> 

 

 Figure 7 presents the relation between SEO discount and ρ for each equilibrium. No matter what 

values of ρ, S4 has the biggest discount than others. Since small ρ makes S4 dominant over any other 

equilibrium, it is expected that there is negative relation between ρ and SEO Discount.  

 After the true value of the stock is unveiled, it is expected that return reversal follows manipulation. 

As there is more severe manipulation, the information asymmetry is maintained at high level and 

price informativeness is poor. Therefore, conditional on the true value of the stock, price is 

appreciated or depreciated more in either direction.  

 

Theorem 7 (Return reversal) Price movements after SEO are larger for more severe manipulation. 

 

III. Empirical Analysis 

 In this section, I test the implication of the theoretical model. To do so, I develop the novel measure 

for ρ. Since small ρ indicates more manipulation, there is negative relation between ρ and discount. 

Large pre-issue market reaction measured by Cululative Abnormal Return (CAR) reduces discount 

but this effects dimish as ρ decreases. Manipulation is inevitably accompanied by the return reversal. 

In the post-issue performance analysis, I find the negative relation between ρ and post-issue return 
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movement. Furthermore, low ρ is followed by good long-term performance. Since the option leverage 

and liquidity make the market efficient, the option leverage and liquidity make the discount smaller. 

However, this effect is marginal for high ρ, which indicates that the option leverage and liquidity is 

more important when ρ is small. Endogeneity concern and other robustness tests are also conducted.  

 

3.1. Measurement of ρ 

�̂�, empirical proxy for ρ, is defined as the correlation of signed Amihud (2002)’s illiquidity measures 

of options and those of the underlying stock. It is possible to make a proxy directly using tick-level 

datasets. However, it requires heavy calculation and the complexity. Amihud provides a quite simple 

but novel methodology to measure order imbalances and liquidity. In a daily level, it is well 

documented that the net buy order imlance increases return and decreases liquidity (Chordia, Roll and 

Subrahmanyam (2002); Chordia and Subrahmanyam (2004 )). High buyer demand and its presurre 

move price higher. This effect is also prominent in option market (Rourke (2014 )). If the market is 

complete and option is redundant, there should not be dispersion of option price from theoretical 

value. However, with information asymmetry, option transaction have information (Back (1993 )) and 

end-user demand pressure affects option price (Bollen and Whaley (2004); Garleanu, Pedersen and 

Poteshman (2009 )). Furthermore, inventory risk of opion move price as much as information 

asymmetry (Muravyev (JF Forthcoming )). Therefore, on a day with higher net buy orders, stock and 

option return will be appreciated and the amount of return increase per voulme will be also higher. �̂� 

is defined as 

�̂� = 𝐶𝑜𝑟𝑟 (
𝑟𝑠
𝑉𝑠

,
𝑟𝑜
𝑉𝑜

) 

where rs (ro) is return on stock(option) and Vs (Vo) is trading volume normalized to shares outstanding 

(open interest). It is estimated in the period between 84 and 21 trading days prior to the issuance to be 

less affected by any informed tradings. In the model, the correlation of the uninformed order is 

calculated as 2ρ−1. However, it is expected for �̂� to be close to one due to its definition. Options have 

two classes; call and put options. Since it is important to measure the direction of the option trading, 
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return on option is defined as the return of a portfolio buying a call and selling a put option, which is 

synthetic futures. Since only ATM options are considered, the delta of the portfolio is 1 and 

comparable to purchase one stock. Return on call or put option is based on the mid point of the bid 

and ask price in Optionmetrics (Coval and Shumway (2001); Muravyev (JF Forthcoming )). 

Therefore, the return correlation should be close to one by definition. Although the signed Amihud 

illiquidity is not exactly same as the return, the characteristics should be similar. Signed Amihud 

illiquidity of the option is defined as 

ro

𝑉𝑜
=

𝑟𝑐
𝑉𝑐

−
𝑟𝑝

𝑉𝑝
 

where rc(rp) is return on call(put) option and Vc(Vp) is call(put) option trading volume normalized to 

open interest. For the robustness check, I also test the return correlation (�̂�r), the signed Amihud 

correlation using raw trading volume (�̂�v), the signed Amihud correlation with call options (�̂�c), and 

the signed Amihud correlation with put options (�̂�p). All other variables are defined in the Appendix 

A. 

 

3.2. Characteristics of 𝝆 

One of the critical assumption in the model is that the market makers can observe two markets’ order 

flow. In practice, this could not be a true, since the market makers in one market may have a 

previllege to access private information contained in the order flow or the limit order book. However, 

post-trade transparency provides enough condition for the observability of order flow (Back and 

Crotty (2015 )). Since the market makers can infer the order flow from the price movement, post-trade 

transparency is the sufficient assumption in the model setting. Equity markets are fairly transparent. 

Especially, in 1990s, NYSE allows the floor traders to view order book. On January 24, 2002, NYSE 

makes the public accessible to the real time depth of the limit order book (Baruch (2005); Boehmer, 

Saar and Yu (2005); Hasbrouck (2006 )). Option markets also have fair level of transparency. In 

CBOE, under Rule 6.51, the seller and buyer should report the trading detail within 90 seconds of 

execution, such as price, transaction amount, broker, execution time, type, and maturity. Also, Plan 
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for Reporting of Consolidated Options Last Sale Reports and Quotation Information has been 

approved under the Securities Exchange Act of 1934. This plan is for providing consolidated 

information on option quotes and trades. Recently, the Options Price Reporting Authority (OPRA) 

was founded as a limited liability company ("LLC") under the plan5. OPRA plan help the investors, 

broker-dealer, and market to get a better information and the best price (Battalio, Hatch and Jennings 

(2004); Battalio and Schultz (2006); Rourke (2013); Rourke (2014 )). Even if there is reporting lag, 

since I use daily returns and volume, it is unlikely for the market makers to miss other market’s order 

flow. Furthermore, 90 seconds reporting lag is short enough to assure that there is no reporting lag and 

enough transparency in daily level anaysis. 

 

3.3. Data and Sample construction 

My dataset is based on SDC New Issue database for Seasoned Equity Offerings (SEO) of U.S. 

Public Common Stock. The sample period starts in January 1996 and ends in December 2013. I 

exclude issues with missing offer date or CUSIP. Only the firm commitment and accelerated or block 

offer in SDC offer technique is included. These screening criteria yield a sample of 6,992 SEOs. To 

determine the effective offer date for offerings which take place after the close of day, I follows the 

volume-based offer date correction rule in Corwin (2003).  

The stock price data is from Center for Research in Security Prices (CRSP). I only include common 

stock with share codes 10 and 11, listed on NYSE/AMEX or Nasdaq. Financial firms (SIC code 

between 6000 and 6999) and Utilities (SIC code between 4900 and 4999) are excluded. The CRSP 

data are merged with Compustat. Firms that do not have book equity value for the fiscal year prior to 

the issuance in Compustat are excluded. If the issue date is no later than 4 months after the last prior 

fiscal year, data in the fiscal year before the last are rather used. Firms with negative book equity are 

excluded. These data filters leave 3,010 SEOs. 

Option data are from OptionMetrics providing numerous information such as price, implied 

volatilities, open interests, and volumes. I only include the at-the-money (ATM) options with positive 

                                                           
5 http://www.opradata.com 
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open interest, the days to maturity between 30 and 60 ensuring enough liquidity. Options with |delta| 

between 0.375 and 0.625 are defined as ATM (Bollen and Whaley (2004 )). Due to the restrictions on 

other variables, the final sample contains 1,155 SEOs. 

 

< Insert Table 1> 

 

Table 1 presents summary statistics. As predicted, all the correlation measures are close to 1. 

Average discount is 0.0336, which is similar to the previous studies (Altınkılıç and Hansen (2003); 

Corwin (2003); Henry and Koski (2010 )). On average, post-issue performance is negative. CAR[1,5] 

and CAR[6,10] are -0.8% and -1.2%, respectively. Consistent with previous literatures, the firms 

doing SEO show low long-run performance. 6 months Buy-and-Hold return (BHR), matching firm 

adjusted abnormal return (MBHAR), and Fama-French value-weighted portfolio adjusted abnormal 

return (VWBHAR) are -0.091, -0.031, and -0.104, respectively. Option leverage is 1.639, which 

means that ATM option return is 16.39% when the stock return is 1% (option leverage in the analysis 

is resized by 1/10). Since only ATM options with delta of 0.5 are analyzed, it indicates that the stock 

is 16 times expensive than the options. Average firm size is $4,890 M (7.395 in logarithm). Firm size 

is much larger compared to the previous studies, since the firms with options listed are usually large 

firms. When the SEO firms without options are included, average firm size is $2,016 M. Average 

Market-to-Book (MTB) is 12.04 (1.719 in logarithm). When the SEO firms without options are 

included, average MTB is 9.51 (1.533 in logarithm), which indicates that SEO firms with options are 

more close to the growth firm. Standard deviation of the stock return is 4%, which is higher than the 

sample including SEO without options. This is due to the fact that options make the volatility of 

underlying stocks stochastic (Back (1993); Jarrow (1994 )). Amihud is 0.127, indicating that option 

listing provides liquidity to the stock. 39.7% of the sample is listed on New York Stock Exchange 

(NYSE). One-year prior abnormal stock return (ARPR) is 74.8% (0.352 in logarithm). That is, the 

                                                           
6 Discount is defined in logarithm. The discount defined as offer price / stock close price one day prior to 

issuance is 3.15% (2.23%) on average (median). 
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firms issuing new shares outperform Fama-French value-weighted portfolio by 74.8%, one year prior 

to SEO. Pre-market reaction is on average negative. CAR[-5,-1] is -2.8%. 74.2% of the sample is 

primary offering and 25.2% of the sample use accelerated issuance. Relative offer size (RelOfrSize) is 

13.5%. Since the firms with options are usually large, the offer size is relatively small. The stock close 

price one day prior to SEO is $34.93 (3.368 in logarithm). 73.4% of the sample do offer price 

clustering and 71.8% of the sample have lock-up provision. Lock-up provision helps the firms to 

resolve information asymmetry. However, since there is a selection bias that the firms with high 

information asymmetry choose to include the provision, there is positive correlation between 

information asymmetry and the provision (Karpoff, Lee and Masulis (2013 )). On average, the firms 

conducting SEO previously issued shares 2.802 times. Tangible ratio is 47% and bid/ask spread 

(BA_Spread) is 5.2%. Overall, the sample analyzed in this paper has the firms with large size, high 

MTB (growth firm), and more efficient. 

 

< Insert Table 2 & Table 3> 

 

The characteristics of the sample and their relations are documented in Table 2 and Table 3. As 

predicted, �̂� and SEO discount has negative relation. High �̂� firms are larger, more liquid, and less 

information asymmetric. This is natural that the correlation measure doesn’t only capture the order 

imbalance but also the price efficiency and information asymmetry. As Back (1993) documented, 

unless there is information asymmetry, options are redundant and there will not be dispersion in 

option price. Interestingly, �̂� and market sentiments measured by ripo and nipo have positive correlation. 

This could be explained in various ways. In high sentiment market, it is more possible that irrational 

investors do uninformed speculative trading, which increases �̂�. Also, in that market, since many 

investors are optimistic about the future stock price, there will not be less heterogeneous opinion on 

valuation of the stock. For excluding these possibility, the signed Amihud correlation measure is 

better than the raw return correlation. In order to exclude the above concerns, I also control these 

issues by including control variables and endogeneity controlled analysis.  
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3.4. Results 

 In this section, I test the hypothesis about the manipulation and its relation with �̂�.  

 

3.4.1. SEO discount and ρ 

 

< Insert Table 4> 

 

 Since small �̂�  stimulates the manipulation and larger SEO discount, it is expected that there is 

negative relation between �̂� and SEO discount. In Table 4, coloumn (1) to (3) present the results for 

the anlaysis of �̂� and SEO discount. Coulmn (1) is the results of univariate regression. Coloumn (2) 

and (3) are the multivariate regression results with industry and year clustering (Petersen (2009 )). All 

three results show that there is negative relation between �̂�  and SEO discount. Therefore, as �̂� 

increases, the market is more likely to be in the less manipulative equilibrium and discount diminishes. 

It is economically significant, since as �̂�  increases one standard deviation (9.8%), SEO discount 

decreases about 0.52%. It’s 11.54 percent of discount standard deviation (4.5%). The option leverage 

and Amihud have negtive and positive coefficient. Although they are insignificant, it’s the evidence 

that they enhence the market efficiency. The degree of the option leverage and liquidity impacts is 

dependent on �̂�. In the later analysis, I show that their effect is much stronger in low �̂� market. 

Consistent with previous literatures (Altınkılıç and Hansen (2003); Corwin (2003); Mola and 

Loughran (2004 )), the level of price and offer price clustering have negative and positive impacts on 

SEO discount. The proxies for the information asymmetry such as LockUp, NumIssue, and 

BA_Spread have positive coefficients as predicted. Since Tangibility measures the inverse of 

information asymmetry, it has negative coefficients. Market inefficiency measured by |ARs| and |ARo| 

also have positive impacts on discount. Coloumn (4) to (7) are the regression with alternative 

correlation measures. All four alternatives also shows that there is negative relation. 

 Pre-issue market reaction is usually used as a tool to test manipulation. Corwin (2003) finds the 

evidence that positive reaction increases discount but negative reaction has no effect on SEO discount. 
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It supports the hypothesis that the issuing firm determine the offer price based on the expected price, 

not on recently dropped market price. Henry and Koski (2010) find, however, the contradicting 

evidences that negative CAR prior to the issuance is followed by larger discount. That is, poor market 

response will increases SEO discount, which is the evendence supporting manipulation hypothesis. 

Their arguments have a limitation in the sense that the manipulation doesn’t always happen. It is 

required to control the sample with high manipulation possibility. 

 

< Insert Table 5> 

 

 With option, pre-issue market reaction contains useful information only when ρ is high. If the market 

reaction is for resolving information asymmetry, higher return movement will lower the discount in 

either direction. Therefore, we can predict that there will be negative relation between absolute of pre-

issue CAR and discount unless there is manipulation. Coloum (1) in Table 5 shows that the coefficient 

on |CAR[-5,-1]| is negative, which means that large market reaction is in general by the informative 

trading. The results in column (3) also supports this hypothesis. Negative CAR (CAR[-5,-1]−) has 

positive but positive CAR (CAR[-5,-1]+) has negative coefficients. However, the pre-issue reaction 

lose its power lowering discount as ρ decreases. In column (2), the coefficient on the interaction 

between |CAR[-5,-1]| and �̂�  is negative, which indicates that as �̂�  decreaes, high market reaction 

generate high discount. This results can be explained by manipulation hypothesis. In coloumn (4), the 

upper 50% sample with respect to �̂�  is tested. Negative and positive CAR has more significant 

coefficient than those in coloumn (3). On the other hand, lower 50% sample in coloumn (5) lose its 

significancy, which is consistent with the manipulation hypothesis when ρ is low. In short, I find the 

results supporting both hypothesis. There is manipulation only when �̂� is low and pre-issue market 

reaction lose its power as �̂� decreases.  

 

3.4.2. Post-issue performance 
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< Insert Table 6> 

 The manipulation is accompanied by the return reversal, that is, there is negative relation bewteen 

post-issue market reaction and �̂� . In general, return reversal is considered as the case of the 

manipulators artificially dropping the price and then the price recovering to the fair level. However, if 

there is manipulation, there should be large price drop in negative direction, otherwise the market will 

not be decieved for the sell order. The manipulation is possible since the market should not know the 

intention of the order flow. Therefore, absolute of post-issue market reaction (|CAR|) is a proper 

measure to detect return reversal. Table 6 presents the results of the multivariate regression for |CAR| 

with respect to �̂�. In column (1), as �̂� increases, |CAR[1,5]| decreases. For low �̂� market, there is more 

chances of manipulation and information asymmetry sustains high. Therefore, the price should be 

move larger after the information asymmetry is resolved, in either directions. Interestingly, this effect 

lasts for up to 10 trading days. In column (2), the coefficient on �̂� to |CAR[6,10]| is significantly 

negative. This raises the possibility that the true value is revealed not immediately after the issuance. I 

test the CAR+ and CAR− after the issuance. For positive CAR, CAR+, although they are both negative, 

the coefficient on �̂� in coloumn (3) is insignificant, but one in coloumn (4) is significant. Therefore, 

for a good offer, it takes time for the true value to be unveiled. On the other hand, for negative CAR, 

CAR−, the coefficient on �̂� in coloumn (5) is significant, but one in coloumn (6) is insignificant. That 

is, for a bad offer, the true value is revealed faster than for a good offer. In short, the return reversal is 

accompanied by small �̂�. 

 

< Insert Table 7> 

 

The results in Table 6 raise a possibility that it can take longer to reveal the true value. Although the 

short-term post-issuance performance shows that there is large return movement for small �̂� , 

manipulation could make harder reveal the true value. In the model, there is a cost relating to the 

manipulation. However, if the manipulators can cover there short position with lower price, the 

mainpulation cost will be retrenched. Therefore, there is an incentive for the manipulators to slow 
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down the information revealation process. Table 7 reports the long-run performance after the issuance. 

Coloumn (1) and (2) are the results for the size-and MTB matching firm adjusted buy-and-hold return. 

Coloumn (3) and (4) are the results for the Fama-French value-weighted portfolio adjusted buy-and-

hold return. Coloumn (5) and (6) are the results for the raw buy-and-hold return. Unlike short-term 

performance results, low �̂� perform much better than high �̂� SEO. It lasts up to one year. This can be 

interpreted as low �̂� SEO being manipulated and outperforming much compared to the bad offer with 

low �̂�. Consequently, it is evident that small �̂� is an indication of the manipulation and outperforms 

SEO with high ρ. 

 

3.4.3. Option leverage and liquidity 

  

Option leverage and liquidity are known to enhance market efficiency. In Table 4, although they are 

both insignificant, OLev and and Amihud have negative and positive coefficient. Therefore, higher 

option leverage encourage the informed traders participate in the option market activities and high 

illiquidity measured by Amihud get the informed traders away from the market transaction. However, 

their roles are much more important when �̂� is low. For the high �̂� SEO, the market itself in the good 

condition for the informative trading. Therefore, although option leverage and liquidity is enhenced, 

their effects are marginal. Table 8 and Table 9 present the effects of option leverage and liquidity. In 

coloumn (1) of Table 8, the coefficient on the interaction term between Olev and ρ̂ is positive while 

one on OLev is negative. As �̂� decreases, option leverage lower more the discount. Coloumn (2) to (5) 

using alternative meausres also show similar results. Liquidity also have much more impacts when �̂� 

is low. In coloumn (1) of Table 9, the coefficient on the interaction term between Amihud and �̂� is 

negitive while one on Amihud is positive. As �̂� decreases, illiquidity increases more the discount. 

That is, liquid SEO has smaller discount. Although the results in coloumn (1) are marginally 

significant, those in coloumn (2) to (5) using alternative measures show significant coefficients.  

 

< Insert Table 8 and Table 9 > 
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3.5. Robustness test 

 Empirical proxy for ρ, �̂�, has issues that it doesn’t only capture the order imbalance, but also does 

information asymmetry, market efficiency, and market sentiments. To alleviate these concerns, I run a 

first stage regression of �̂� on engogineity proxies to get a residual, which is independent of those 

concerns. For proxies for information asymmetry, STD, LockUp, No_Issue, Tangible, and 

BA_Spread are used. For proxies for market efficiency, |ARs| and |ARo| are used. Finally, for proxies 

for market sentiments, rIPO and nIPO are used. Table 10 reports second stage results only. All the results 

are similar. 

 

<Insert Table 10> 

 

 Another issue that can be arised is the measurement of long-run performance. Although Buy-and-

hold return is widely used methodology, there is a statistical issue (Fama (1998); Loughran and Ritter 

(2000); Lyon, Barber and Tsai (1999 )). For an additional check, I test the long-run performance after 

SEO by forming calandar-time portfolio. For a given month, firms issuing new shares for last six 

months are included in the portfolio. Also, there are two portfolio depending on ρ. If the firm’s ρ is 

smaller than the median, it is designated to the small �̂� portfolio. Otherwise, it goes to the high ρ 

portfolio. Table 11 reports the results. In coloumn (1), the high �̂� group underperforms by 1.043% per 

month. However, the low ρ group in coloumn (2) has insignificance α. After the momentum factors 

are included in coloumn (3) and (4), the results are not changed. Coloumn (5) shows the results for the 

zero-investment porttolio analysis. High �̂�  group underperforms the low ρ group by 1.213% per 

month. 

 

<Insert Table 11> 
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 Table 12 presents the results using alternative correlation measures. All the results are consistents 

with the previous one, although some are marginally significant.  

 

<Insert Table 12> 

 

IV. Conclusion 

 I find the theoretical and empirical evidences that the existence of options can generate the incentives 

for informed investors to manipulate markets prior to SEOs. The primary parameter deciding 

manipulation is intermarket liquidity, induced by the likelihood of trading both option and the 

underlying stock in the same direction by uninformed liquidity traders (ρ). ρ can be expressed as the 

correlation of the uninformed orders between stock and options. As ρ decreases, the informed traders 

have more incentives to manipulate the market, since they cannot avoid demand shocks following the 

informative strategy. Interestingly, unless ρ is extremely high, the informed traders prefer to transact 

only in one of the two markets. However, in the normal condition, manipulating one market is 

dominant over informative (no manipulating) strategy. Similar to Gerard and Nanda (1993), SEOs 

make it even profitable to manipulate both markets, which is not feasible without SEOs. As ρ 

decreases more with SEOs, manipulating both markets requires costs in manipulative market trading, 

but generates enough SEO discount to cover all the costs. The model predicts that there will be larger 

SEOs discount when ρ is lower, since small ρ stimulates manipulation, which makes fully 

manipulative strategy is dominant. 

To test the model, I develop the novel empirical proxy for ρ. ρ̂ is defined as the correlation of signed 

Amihud (2002)’s illiquidity measures of options and those of the underlying stock. Since order 

imbalances move price and lower liquidity, singed Amihud can be a good measure for order 

imbalances. In the empirical analysis, I find that one standard devation increases of ρ (9.8%) lower the 

discount by 0.52%. This supports the hypothesis that SEOs with low ρ are in the manipulative 

equilibrium, which induce larger SEOs discount. The relation between pre-issue CAR and discount is 
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usually used as an identification strategy for manipulation. I find that pre-issue CAR in either 

direction significantly reduce distount, which rejects the manipulation hypothesis. However, this 

effect is significantly reduces as ρ become smaller. Therefore, the informativeness of pre-issue stock 

movement weaken as ρ decreases, which supports the manipulation hypothesis with small ρ. 

Furthermore, SEOs with low ρ is followed by large post-issue return movement and higher long-run 

performance, being consistent with the return reversal followed by manipultion. This shows that small 

ρ induce manipulation and it takes time to reveal the true value of the stock. Finally, option leverage 

and liquidity insignificantly lower the discount. However, for SEOs with small ρ, their effects signify.  

This paper shed lights on understand how SEOs and options provide informed investors with the 

incentive to manipulate the markets, for getting better prices and larger SEO discount. Cross-market 

correlation of the uninformed traders, which is critical factors for intermarket liquidity and 

intermarket trading, is critical factor for manipulation and market efficiency. 
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Appendix 

Appendix A. Variable Definition 

Variables Definition 

Discount log(closing stock price 1 day prior to the issuance/the offer price) 

CAR[±t, ±s] Cumulative abnormal return between I.D. ±  t and I.D. ±  s, using Fama-French 

model with momentum, where I.D. stands for issue date 

|CAR[± t, ± s]| Absolute value of CAR[± t, ± s] 

CAR[± t, ± s]+ CAR[± t, ± s] when positive 0 otherwise 

CAR[± t, ± s]− CAR[± t, ± s] when negative 0 otherwise 

PCR[± t, ± s] Average Put to Call implied volatility ratio between I.D. ±  t and I.D. ±  s 

OCAR[± t, ± s] Cumulative abnormal option return between I.D. ±  t and I.D. ±  s, using delta-

expected optioin return defined as the product of delta and stock return 

BHR Buy-and-hold return of the issuing firm ( BHR =  ∏ (1 + 𝑟𝑠,𝑡) − 1𝑚
𝑡=𝑙  ) 

ARPR log(1 year prior BHR)-log(1 year prior BHR of CRSP value-weighted return) 

MBHAR log(Event firm BHR) – log(Size/BTM matched firm BHR) 

VWBHAR log(Event firm BHR) – log(Fama-French Size/BTM 25 portfolio BHR) 

OLev Option leverage defined as 
𝜕𝐶/𝐶

𝜕𝑆/𝑆
−

𝜕𝑃 𝑃⁄

𝜕𝑆 𝑆⁄
= 𝛿𝑐

𝑆

𝐶
+ (−𝛿𝑝)

𝑆

𝑃
= CLev + Plev. OLev is 

divided by 10 for scailing 

VOLM log(average stock trading volumes normalized by shares outstanding between 84 

days and 21 days prior to the issuance) 

OVOLM log(average call and put option trading volumes normalized by open interest 

between 84 days and 21 days prior to the issuance) 

Size log of Market equity value in Million dollars 21 trading days prior to the issuance 

(adjusted for inflation with purchasing power in 2005 dollar) 

MTB log(Market equity value to Book equity value). Book equity value is measured as 

Fama and French (1993) 

STD Standard deviation of the stock return between 84 days and 21 days prior to the 

issuance 

AMIHUD Amihud illiquidity between 84 days and 21 days prior to the issuance 

NYSE Dummy equals 1 if listed on NYSE and 0 otherwise 

PRIM Dummy equals 1 if primary offer and 0 otherwise. Primary offer is for the offer that 

more than 50% of the total offer is primary 

ACCEL Dummy equals 1 if accelerated or block offering and 0 otherwise 

RELOFRSIZE The average ratio of number of the shares issued to the share outstanding between 

84 days and 21 days prior to the issuance 

PRICE log(closing stock price 1 day prior to the issuance) 

PRICE_Cluster Dummy equals 1 if the offer price is set at even such as 0, 0.25, 0.5, and 0.75 

LOCKUP Dummy equals 1 if lock-up provision exists and 0 otherwise 

NUMISSUE Number of preview issues by the issuing company 

TANGIBILITY (Property, Plant and Equipment)/(Total Asset) 

BA_SPREAD Average Stock Bid/Ask spread between 84 days and 21 days prior to the issuance 

|ARs| absolute value of stock return autocorrelation between 84 days and 21 days prior to 

the issuance 

|ARo| Absolute value of option return autocorrelation between 84 days and 21 days prior 

to the issuance 

rIPO The average first-day return on the net IPOs from Jay Ritter 

nIPO The gross number of IPOs from Jay Ritter 
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Appendix B. Proof 

Proof for Theorem 2.  

 The sets of net order flows are Ψ1 = [xs++us, xs+−us (=xs−+us), xs−−us] = [Y1
1, Y1

2, Y1
3] for SS1 and 

Ψ2 = [xs++us (=xs−+us), xs+−us (= xs−−us)] = [Y2
1, Y2

2] for SS2. The expected price conditional on 

Ṽ is calculated as the product of the price conditional on Ỹ (P|Ỹ) and the conditional distribution of Ỹ 

(prob(Ỹ|Ṽ)). 

E[P|Ṽ]  =  ∑ P|Ỹ × prob(Ỹ|Ṽ)

Ỹ∈Ψ

 

The price conditional on Ỹ is given as P(Y1
1) = V+, P(Y1

2) = V−+(1−bs)ΔV, P(Y1
3) = V− for Ψ1 and 

P(Y2
1) = P(Y2

2) = P0 = V−+ΔV/2 for Ψ2. The conditional distribution of Ỹ|V+ is given as Prob(Y1
1|V+) 

= bs, Prob(Y1
2|V+) = 1−bs, Prob(Y1

3|V+) = 0 for Ψ1 and Prob(Y2
1|V+) = Prob(Y2

2|V+) = 1/2 for Ψ2. The 

conditional distribution of Ỹ|V− is given as Prob(Y1
1|V−) = 0, Prob(Y1

2|V−) = bs, Prob(Y1
3|V−) = 1−bs  

for Ψ1 and Prob(Y2
1|V−) = Prob(Y2

2|V−) = 1/2 for Ψ2. 

 The expected offer price conditional on Ṽ is calculated similarly. The offer price conditional on Ỹ is 

given as P*(Y1
1) = V+, P*(Y1

2) = V+ −
𝜂𝑏𝑠

(𝜂−1)𝑏𝑠+1
ΔV, P*(Y1

3) = V− for Ψ1 and P*(Y2
1) = P*(Y2

2) =  V+ −

𝜂

𝜂+1
ΔV for Ψ2. 

E[P|V+]= V+ − εΔV and E[P|V−]=V ̶  + εΔV where the price kernel, ε, is bs(1 − bs) for SS1, and 1/2 

for SS2. E[P*|V+]= V+ − ε’ΔV and E[P*|V−]= V ̶  + ε’/(ηbs)ΔV for SS1, and E[P*|V+]= E[P*|V−]= V+ − 

ε’ΔV for SS2. The offer price kernel, ε’, is 
𝜂

𝜂𝑏𝑠+(1−𝑏𝑠)
𝜖 for SS1, and 

𝜂

𝜂+1
  for SS2.  

 Therefore, the conditional expected profits for each equilibrium are 

Π+|SS1 = εΔV ⋅ xs
+ + αIε

′ΔV 

Π−|SS1 = −εΔV ⋅ xs
− = −εΔV ⋅ (xs

+ − 2us) 

Following Theorem 1, the maximum profit, Π|SS1, is (
αI

2
∙ ε′ + us ∙ ε) ΔV. The trading schedule for the 

informed traders is xs
+ = xs

− − 2us = us −
αI

2
∙

η

ηbs+(1−bs)
. The conditional expected profits for SS2 are 

Π+|SS2 = εΔV ⋅ xs
+ + αIε

′ΔV 
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Π−|SS2 = −εΔV ⋅ xs
− = −εΔV ⋅ xs

+ 

Following Theorem 1, the maximum profit, Π|SS2, is 
αI

2
∙ ε′ ∙ ΔV . The trading schedule for the 

informed traders is xs
+ = xs

− = −αI ∙
𝜂

𝜂+1
. 

 

Proof for Theorem 3.  

 Proof for Theorem 3 is similar to Theorem 2. The only difference is that the options are traded and 

the information leaked in one market is transmitted to the other, immediately. The price conditional 

on Ỹ (P|Ỹ) and the conditional distribution of Ỹ (prob(Ỹ|Ṽ)) are given in Figure 4. For example, the 

conditional expected price in S2 is given as follows.  

E[P|V+,S2]=V+ ∙ ρ/2 + V+ ∙ (1−ρ)/2 + (V−+(1− ρ) ΔV) ∙ (1−ρ)/2 + (V−+ρ ΔV) ∙ ρ/2 + V− ∙ 0 

= V− − ρ(1−ρ)ΔV 

= V− − ε ΔV 

Other conditional expected prices are calculated similarly. The conditional profits for S2 is given as 

follows. ε is ρ(1−ρ) and ε′ is 
𝜂

2
∙

𝜂+1

(𝜂−1)2ε+𝜂
∙ ε for S2 

Π+|S2 = εΔV ⋅ xs
+ + εΔVK ⋅ xo

+ + αIε
′ΔV 

Π−|S2 = −εΔV ⋅ xs
− − εΔVK ⋅ x𝑜

− = −εΔV ⋅ (xs
+ − 2us) − εΔVK ⋅ x𝑜

+ 

Following Theorem 1, the maximum profit, Π|S2, is (
αI

2
∙ ε′ + us ∙ ε) ΔV. The trading schedule for the 

informed traders is xs
+ = xs

− − 2us = −
ΔVK

ΔV
xo

+ + (us −
αI

2
∙
ε′

ε
 ) and xo

+ = xo
−. Other equilibrium can 

be similarly specified.  

 

Proof for Theorem 5 

Under Assumption 1, there is manipulation when Π|S4 is the largest. Let x = ρ(1−ρ), �̃�𝑠=us, 

�̃�𝑜=δuo, and k=(2,3)=(s,o). There is manipulation if and only if Π|S4 − Π|Sk > 0. 

Π|S4 − Π|Sk = 
1

2
A ⋅ ΔV − ρ(1 − ρ)[A′ + ũk] ⋅ ΔV > 0. 
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→ 4ũk(η2−1)(η−1) x2−[αIη(η2−6η+1)−4η(η+1)ũk] x − 2η2αI<0 

→ 0 < x < Mk     

where   Mk = 
[𝑓(𝛼𝐼,�̃�𝑘)+√𝑓(𝛼𝐼,�̃�𝑘)2+32𝜂2(𝜂−1)(𝜂2−1)𝛼𝐼�̃�𝑘]

8(𝜂−1)(𝜂2−1)�̃�𝑘
  and  

𝑓(𝛼𝐼 , �̃�𝑘) = 𝜂(𝜂2 − 6𝜂 + 1)𝛼𝐼 − 4𝜂(𝜂 + 1)�̃�𝑘  

Since 0 < ρ < 1/2, x > 0. Therefore, the above ineqaulity is same as ρ2 – ρ + Mk >0. 

∴ ρ < 
1

2
× [1 − √1 − 4Mk] 

∂Mk

𝜕𝛼𝐼
=

1

8(𝜂 − 1)(𝜂2 − 1)�̃�𝑘
[(1 +

𝑓

√𝑓2 + 𝜙𝛼𝐼

) ⋅ 𝜂(𝜂2 − 6𝜂 + 1) +
𝜙�̃�𝑘

2√𝑓2 + 𝜙𝛼𝐼�̃�𝑘

] > 0 

∂Mk

𝜕�̃�𝑘
= −

1

�̃�𝑘
2(𝜂2 − 1)(𝜂 − 1)

×
1

8√𝑓2 + 𝜙𝛼𝐼�̃�𝑘

[
𝜙𝛼𝐼�̃�𝑘

2
+ 𝛼𝐼𝜂(𝜂2 − 6𝜂 + 1)(𝑓 + √𝑓2 + 𝜙𝛼𝐼�̃�𝑘)] 

where 𝜙=32η2(η–1)(η2–1) 

The sign of  
∂Mk

𝜕�̃�𝑘
 depends on η. When η2−6η+1>0, 

∂Mk

𝜕�̃�𝑘
 is always negative. When η2−6η+1<0, 𝑓<0. 

Let g(u) =  
𝜙𝛼𝐼�̃�𝑘

2
+ 𝛼𝐼𝜂(𝜂2 − 6𝜂 + 1)(𝑓 + √𝑓2 + 𝜙𝛼𝐼�̃�𝑘. Since Mk < 1/4,  

g(u) > 
𝜙𝛼𝐼�̃�𝑘

2
+ 2αIη(η–1)(η2–1)(η2−6η+1)�̃�𝑘 

= 2αIη(η–1)(η2–1)(η+1)2�̃�𝑘 

>0 

∴ 
∂Mk

𝜕�̃�𝑘
 < 0 

 

Proof for Theorem 6 

Under Assumption 1, E[DSCT|Si] where i=(1,2,3) is an increasing function of ρ, since E [
∂DSCT

∂ρ
|S1] =

1

4
⋅
𝜂−1

𝜂+1
ΔV and E [

∂DSCT

∂ρ
|S2] = E [

∂DSCT

∂ρ
|S3] =

1−2ρ

4
⋅

𝜂(𝜂2−1)

[(𝜂−1)2𝜌(1−𝜌)+𝜂]2
ΔV. Therefore, if the discount 

at ρ = 1/2 is bigger than others, it’s always larger regardless of ρ. Discounts at ρ = 1/2 are given as 

E[DSCT|S1, ρ=1/2] =  
1

8
⋅
𝜂−1

𝜂+1
ΔV , E[DSCT|S2, ρ=1/2] = E[DSCT|S3, ρ=1/2] =  

1

4
⋅
𝜂−1

𝜂+1
ΔV , and 

E[DSCT|S4, ρ=1/2] = 
1

2
⋅
𝜂−1

𝜂+1
ΔV. 
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Figure 1 Timeline of option manipulation model 
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Figure 2 Net orders for Informative and Manipulative strategy 

Panel A presents net orders in informative strategy and Panel B presents net orders in manluative strategy. 
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Figure 3 Net order flow diagram 

Since �̃� is dichotomic, there are two informed order. Therefore, net order flows can have maximum 8 different 

values, since there are 2 assets with 2 uninformed orders. 
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Figure 4 Conditional expected price for each strategy 

Panel A is fully informative strategy, Panel B is partial option manipulative strategy, Panel C is partial stock 

manipulative stratey, and Panel D is fully manipulative strategy. Conditional on equilibrium and observed net 

orders, the conditional expected prices are changed.  
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Panel A. Manipulative EQM without option Panel B. Informative EQM without Option 

  
 

Panel C. EQM with Option 

 

 

 

Figure 5 Profit function and Equilibrium 

Panel A and B are the profit functions with respect to informed orders (x) for a single asset case. Panel A is 

manipulative equilibrium and Panel B is informative equilibrium profit graph. Panel C is the profit functions 

with respect to informed orders (x) for two assets case, which has multiple equilibriums.  
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Panel A. MK < 1/4 Panel B. MK > 1/4 

  

 
Figure 6 Equilibrium Condition with respect to ρ.  

Graph for profits with respect to ρ. Equilibrium with higher profits dominates others. S1 is fully informative 

equilibrium. S2 is partial option manipulative equilibrium. S3 is partial stock manipulative equilibrium. S4 is 

fully manipulative equilibrium.  
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Figure 7 SEO Discount and ρ 

S1 is fully informative equilibrium. S2 is partial option manipulative equilibrium. S3 is partial stock manipulative 

equilibrium. S4 is fully manipulative equilibrium.  
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Table 1 Summary statistics 

 

This table presents the descriptive statistics for a sample of the firms listed in NYSE, AMEX, and NASDAQ, 

conducting SEOs between 1996 and 2013 with options listed. The sample contains 1,155 observations. �̂�, 

empirical proxy for ρ, is the correlation of signed Amihud (2002)’s illiquidity measures of options and those of 

the underlying stock. Other correlation measures are similarly defined; the return correlation (�̂�r), the signed 

Amihud correlation using raw trading volume (�̂�v), the signed Amihud correlation with call options (�̂�c), and 

the signed Amihud correlation with put options (�̂�p). All the other variables are defined in Appendix A.  

 Mean Median STD Skewness 

ρ̂ 0.928 0.953 0.098 -6.605 

ρ̂r 0.938 0.962 0.091 -6.878 

ρ̂v 0.713 0.752 0.171 -2.690 

ρ̂c 0.878 0.903 0.102 -4.205 

ρ̂p 0.870 0.899 0.112 -5.257 

Discount 0.033 0.023 0.045 1.076 

CAR[1,5] -0.008 -0.005 0.074 -0.198 

CAR[6,10] -0.012 -0.008 0.081 -0.348 

PCR[1,5] 1.024 1.015 0.064 1.657 

PCR[6,10] 1.027 1.017 0.061 2.062 

OCAR[1,5] 0.012 -0.004 0.325 1.853 

OCAR[6,10] -0.000 -0.007 0.313 0.544 

MBHAR -0.031 -0.023 0.584 0.085 

VWBHAR -0.104 -0.042 0.457 -1.336 

BHR -0.091 -0.021 0.516 -1.304 

OLev 1.639 1.511 0.689 1.367 

Volm 0.015 0.011 0.015 3.319 

OVolm 0.562 0.451 0.429 2.314 

Size 7.395 7.251 1.296 0.648 

MTB 1.719 1.669 1.114 0.442 

STD 0.040 0.035 0.024 3.189 

Amihud 0.127 0.051 0.213 4.744 

NYSE 0.397 0.000 0.490 0.419 

ARPR 0.352 0.311 0.616 0.020 

CAR[-5,-1] -0.028 -0.021 0.096 0.580 

OCAR[-5,-1] 0.025 -0.000 0.388 0.404 

PRIM 0.742 1.000 0.438 -1.106 

ACCEL 0.252 0.000 0.434 1.143 

RelOfrSize 0.135 0.117 0.091 2.174 

Price 3.368 3.402 0.716 -0.123 

Price_Cluster 0.734 1.000 0.442 -1.060 

LockUp 0.718 1.000 0.450 -0.968 

NumIssue 2.802 2.000 1.842 1.543 

Tangibility 0.470 0.328 0.427 1.618 

BA_Spread 0.052 0.046 0.025 1.251 

| ARs | 0.105 0.088 0.080 0.886 

| ARo | 0.170 0.124 0.172 2.429 

rIPO 0.218 0.148 0.241 2.079 

nIPO 0.234 0.170 0.201 1.434 
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Table 2 Correlation 

 

This table presents the Pearson correlation coefficients among variables for a sample of the firms listed in NYSE, 

AMEX, and NASDAQ, conducting SEOs between 1996 and 2013 with options listed. �̂�, empirical proxy for ρ, 
is the correlation of signed Amihud (2002)’s illiquidity measures of options and those of the underlying stock. 

Other correlation measures are similarly defined; the return correlation (�̂�r), the signed Amihud correlation 

using raw trading volume (�̂�v), the signed Amihud correlation with call options (�̂�c), and the signed Amihud 

correlation with put options (�̂�p). All the other variables are defined in Appendix A. The symbols, *, **, and 

***, indicates that the correlation coefficients are significantly different from zero at the 10%, 5%, and 1% 

confidence level, respectively.  

 ρ̂ Discount MBHAR OLev Volm OVolm 

ρ̂ 1.000      

Discount -0.175*** 1.000     

MBHAR -0.077*** 0.004 1.000    

OLev 0.039 -0.236*** 0.016 1.000   

Volm 0.057* 0.136*** -0.028 -0.218*** 1.000  

OVolm 0.057* 0.031 -0.020 0.016 0.387*** 1.000 

CAR[1,5] 0.014 -0.007 0.062** 0.069** -0.138*** -0.061** 

CAR[6,10] -0.008 -0.042 0.044 0.058* -0.075** -0.013 

PCR[1,5] -0.070** 0.060** 0.008 -0.046 0.042 -0.023 

PCR[6,10] -0.002 0.072** 0.014 -0.090*** 0.021 -0.055* 

OCAR[1,5] 0.000 -0.043 0.041 -0.010 0.070** -0.030 

OCAR[6,10] -0.046 -0.022 0.041 -0.005 0.001 0.016 

VWBHAR -0.070** -0.022 0.748*** 0.148*** -0.029 0.006 

BHR -0.070** -0.027 0.685*** 0.164*** -0.017 0.007 

Size 0.195*** -0.230*** -0.004 0.406*** -0.096*** 0.108*** 

MTB 0.023 -0.056* -0.007 -0.240*** -0.079*** -0.066** 

STD -0.008 0.235*** 0.001 -0.620*** 0.333*** 0.041 

Amihud -0.072** 0.096*** 0.030 -0.289*** -0.239*** -0.230*** 

NYSE 0.101*** -0.104*** 0.050* 0.419*** -0.027 0.069** 

ARPR 0.081*** -0.108*** 0.035 -0.139*** 0.017 0.056* 

CAR[-5,-1] -0.004 -0.050* 0.010 0.164*** -0.041 -0.029 

OCAR[-5,-1] 0.002 -0.016 -0.025 -0.018 0.076*** 0.049* 

PRIM -0.007 0.139*** 0.011 -0.270*** 0.211*** 0.003 

ACCEL -0.008 0.040 -0.028 0.264*** 0.002 0.053* 

RelOfrSize -0.064** 0.148*** 0.014 -0.217*** 0.139*** -0.015 

Price 0.195*** -0.278*** 0.006 0.296*** -0.101*** 0.027 

Price_Cluster -0.024 0.133*** -0.035 -0.125*** 0.037 -0.012 

LockUp -0.096*** 0.109*** 0.021 0.147*** 0.212*** 0.141*** 

NumIssue 0.015 0.017 -0.013 0.139*** 0.030 0.090*** 

Tangibility 0.062** -0.038 0.037 0.082*** 0.053* 0.000 

BA_Spread 0.009 0.285*** -0.015 -0.728*** 0.273*** 0.001 

| ARs | -0.014 0.061** -0.023 0.013 -0.026 0.012 

| ARo | -0.192*** 0.076*** 0.041 -0.018 -0.096*** -0.091*** 

rIPO 0.088*** -0.109*** 0.075** -0.205*** -0.128*** -0.158*** 

nIPO 0.051* -0.124*** 0.043 -0.079*** -0.238*** -0.276*** 
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Table 3 Univariate Analysis 

 

This table presents the univariate analysis for a sample of the firms listed in NYSE, AMEX, and NASDAQ, 

conducting SEOs between 1996 and 2013 with options listed. The sample contains 1,155 observations. The 

sample is divided into quintile. �̂�, empirical proxy for ρ, is the correlation of signed Amihud (2002)’s illiquidity 

measures of options and those of the underlying stock. Other correlation measures are similarly defined; the 

return correlation (�̂�r), the signed Amihud correlation using raw trading volume ( �̂�v), the signed Amihud 

correlation with call options (�̂�c), and the signed Amihud correlation with put options (�̂�p ). All the other 

variables are defined in Appendix A. The symbols, *, **, and ***, indicates that difference of means between 

high and low quintile are significantly different from zero at the 10%, 5%, and 1% confidence level, 

respectively. t-statictics are reported in parentheses. 

 Low 

1 

 

2 

 

3 

 

4 

High 

5 
High-Low 

ρ̂ 0.810 0.927 0.953 0.968 0.982 0.172*** 
      (15.37) 

OLev 1.580 1.634 1.744 1.582 1.655 0.075 
      (1.21) 

Volm 0.013 0.016 0.016 0.015 0.015 0.002 
      (1.28) 

OVolm 0.551 0.617 0.568 0.550 0.522 -0.029 
      (-0.75) 

Size 6.910 7.311 7.297 7.577 7.882 0.972*** 
      (8.22) 

MTB 1.720 1.619 1.647 1.739 1.871 0.150 
      (1.42) 

STD 0.041 0.039 0.039 0.041 0.040 -0.001 
      (-0.38) 

Amihud 0.173 0.123 0.126 0.109 0.103 -0.070*** 
      (-3.26) 

NYSE 0.294 0.403 0.385 0.420 0.485 0.190*** 
      (4.27) 

ARPR 0.247 0.372 0.376 0.341 0.424 0.176*** 
      (3.21) 

PRIM 0.736 0.714 0.732 0.784 0.745 0.009 
      (0.21) 

ACCEL 0.277 0.260 0.225 0.268 0.229 -0.048 
      (-1.18) 

RelOfrSize 0.146 0.135 0.147 0.130 0.116 -0.030*** 
      (-3.84) 

Price 3.043 3.311 3.409 3.468 3.608 0.566*** 
      (8.75) 

LockUp 0.810 0.727 0.758 0.662 0.632 -0.177*** 
      (-4.33) 

NumIssue 2.861 2.853 2.874 2.680 2.740 -0.121 
      (-0.72) 

Tangibility 0.429 0.477 0.468 0.436 0.542 0.113*** 
      (2.65) 

BA_Spread 0.052 0.051 0.051 0.053 0.053 0.001 
      (0.58) 

| ARs | 0.108 0.107 0.110 0.102 0.100 -0.008 
      (-1.10) 

| ARo | 0.205 0.175 0.156 0.140 0.177 -0.028 
      (-1.51) 

rIPO 0.168 0.208 0.212 0.224 0.280 0.111*** 
      (4.88) 

nIPO 0.210 0.242 0.225 0.239 0.255 0.045** 
      (2.41) 
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Table 4 Discount and �̂� 

 

This table presents the results of Ordinary Least Squares (OLS) regression for SEO discount on  
ρ̂. The sample period is 1996 to 2013, containing 1,155 SEOs. The dependent variable is Discount, defined as 

the logarithm of the ratio of closing stock price 1 day prior to the issuance to the offer price. �̂�, empirical proxy 

for ρ, is the correlation of signed Amihud (2002)’s illiquidity measures of options and those of the underlying 

stock. Other correlation measures are similarly defined; the return correlation (�̂�r) for column (4), the signed 

Amihud correlation using raw trading volume (�̂�v) for column (5), the signed Amihud correlation with call 

options (�̂�c) for column (6), and the signed Amihud correlation with put options (�̂�p) for column (7). All the 

other variables are defined in Appendix A. The symbols, *, **, and ***, indicates that the regression 

coefficients are significantly different from zero at the 10%, 5%, and 1% confidence level, respectively. t-

statictics are reported in parentheses. Year and industry fixed effects are included in all the analyses. Standard 

errors are clustered at the industry level, except for the column (3) which is clustered at the year. 

 (1) (2) (3) (4) (5) (6) (7) 

    �̂�r �̂�𝐯 �̂�c �̂�p 

        

�̂� -0.067*** -0.053*** -0.053*** -0.033*** -0.014** -0.033** -0.034*** 

 (-13.89) (-7.32) (-3.51) (-2.97) (-2.08) (-2.68) (-2.72) 

OLev  -0.001 -0.001 -0.001 -0.001 0.001 -0.005 

  (-0.26) (-0.30) (-0.31) (-0.20) (0.22) (-0.82) 

Volm  0.119 0.119 0.105 0.051 0.117 0.088 

  (0.91) (1.33) (0.83) (0.39) (0.88) (0.69) 

OVolm  0.000 0.000 -0.000 -0.001 -0.001 -0.001 

  (0.06) (0.05) (-0.00) (-0.26) (-0.22) (-0.22) 

Size  0.001 0.001 0.001 -0.000 0.000 0.001 

  (0.42) (0.37) (0.30) (-0.13) (0.24) (0.43) 

MTB  0.001 0.001 0.001 0.001 0.001 0.001 

  (0.46) (0.50) (0.44) (0.51) (0.47) (0.33) 

STD  -0.105 -0.105 -0.102 -0.087 -0.105 -0.109 

  (-1.00) (-1.26) (-0.93) (-0.80) (-0.96) (-1.02) 

Amihud  0.015 0.015 0.016 0.015 0.015 0.016 

  (1.34) (1.69) (1.30) (1.14) (1.28) (1.37) 

NYSE  0.003 0.003 0.003 0.003 0.003 0.004 

  (0.95) (0.85) (0.93) (1.00) (0.77) (1.00) 

ARPR  -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 

  (-1.02) (-1.69) (-1.03) (-1.04) (-1.10) (-1.04) 

CAR[-5,-1]  0.019 0.019 0.020 0.020 0.019 0.018 

  (0.82) (0.86) (0.84) (0.86) (0.78) (0.81) 

OCAR[-5,-1]  -0.004 -0.004 -0.004 -0.004 -0.004 -0.003 

  (-1.45) (-0.97) (-1.53) (-1.66) (-1.56) (-1.33) 

PRIM  0.005 0.005* 0.006 0.006 0.006 0.006 

  (1.54) (2.04) (1.58) (1.62) (1.61) (1.62) 

ACCEL  0.016*** 0.016*** 0.016*** 0.016*** 0.016*** 0.016*** 

  (4.93) (5.30) (4.97) (5.10) (4.96) (4.94) 

RelOfrSize  0.028 0.028 0.027 0.028 0.028 0.028 

  (1.05) (1.11) (1.00) (1.06) (1.02) (1.07) 

Price  -0.008*** -0.008*** -0.008*** -0.008*** -0.009*** -0.008*** 

  (-3.47) (-3.70) (-3.72) (-3.66) (-3.79) (-3.73) 

Price_Cluster  0.012*** 0.012*** 0.012*** 0.012*** 0.012*** 0.012*** 

  (5.53) (5.64) (5.54) (5.61) (5.50) (5.44) 

LockUp  0.006 0.006* 0.006 0.005 0.005 0.006 

  (1.52) (1.77) (1.51) (1.49) (1.48) (1.65) 

NumIssue  0.001 0.001 0.001 0.001 0.001 0.001 

  (1.38) (1.51) (1.34) (1.37) (1.32) (1.25) 

Tangibility  -0.007*** -0.007* -0.007*** -0.007*** -0.007*** -0.007*** 

  (-3.66) (-1.77) (-3.65) (-3.52) (-3.54) (-3.50) 

BA_Spread  0.457** 0.457*** 0.452** 0.447** 0.472*** 0.439** 
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  (2.62) (5.57) (2.57) (2.56) (2.75) (2.50) 

| ARs |  0.034*** 0.034** 0.033*** 0.032*** 0.032*** 0.034*** 

  (3.15) (2.42) (3.02) (2.95) (3.02) (3.15) 

| ARo |  -0.001 -0.001 0.001 0.002 0.002 0.002 

  (-0.17) (-0.15) (0.14) (0.25) (0.25) (0.24) 

rIPO  -0.010 -0.010** -0.010 -0.010 -0.010 -0.009 

  (-1.65) (-2.31) (-1.46) (-1.46) (-1.48) (-1.40) 

nIPO  0.001 0.001 0.000 0.001 0.000 0.002 

  (0.09) (0.08) (0.04) (0.16) (0.06) (0.22) 

Constant 0.096*** 0.075*** 0.075** 0.062** 0.048** 0.060** 0.059*** 

 (11.68) (3.24) (2.78) (2.47) (2.12) (2.35) (2.95) 

        

Observations 1,155 1,155 1,155 1,155 1,155 1,155 1,155 

Adj. R2 0.092 0.194 0.194 0.187 0.185 0.188 0.190 

S.E. Cluster Industry Industry Year Industry Industry Industry Industry 
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Table 5 Discount and pre-issue market reaction 

 

This table presents the results of Ordinary Least Squares (OLS) regression for SEO discount on  
ρ̂. The sample period is 1996 to 2013, containing 1,155 SEOs. The dependent variable is Discount, defined as 

the logarithm of the ratio of closing stock price 1 day prior to the issuance to the offer price. �̂�, empirical proxy 

for ρ, is the correlation of signed Amihud (2002)’s illiquidity measures of options and those of the underlying 

stock. Column (4) is the subsample analysis for the group of upper 50% ρ̂ and column (5) is those for the group 

of lower 50% ρ̂. All the other variables are defined in Appendix A. Control variables are included in the analysis, 

but not reported. The symbols, *, **, and ***, indicates that the regression coefficients are significantly 

different from zero at the 10%, 5%, and 1% confidence level, respectively. t-statictics are reported in 

parentheses. Year and industry fixed effects are included in all the analyses. Standard errors are clustered at the 

industry level. 

 (1) (2) (3) (4) (5) 

    High ρ̂ Low ρ̂ 

      

ρ̂ -0.053*** 0.026 -0.053*** 0.040 -0.057*** 

 (-7.44) (1.07) (-7.31) (0.24) (-3.91) 

|CAR[-5,-1]| -0.050** 0.692***    

 (-2.17) (3.71)    

x �̂�  -0.797***    

  (-3.84)    

CAR[-5,-1]+   -0.034 -0.042 -0.018 

   (-1.15) (-1.61) (-0.24) 

CAR[-5,-1]−   0.060* 0.083** 0.043 

   (1.92) (2.56) (1.04) 

      

Controls Yes Yes Yes Yes Yes 

Observations 1,155 1,155 1,155 577 578 

Adj. R2 0.198 0.211 0.198 0.153 0.198 
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Table 6 Return-reversal and short-term performance after SEOs 

 

This table presents the results of Ordinary Least Squares (OLS) regression for short-term performance after 

SEOs on �̂�. The sample period is 1996 to 2013, containing 1,155 SEOs. The dependent variable is Cumulative 

Abnormal Return (CAR) after SEOs; |CAR[1,5]|, the absolute value of CAR 1 day and 5 days after the issue 

date, for column (1); |CAR[6,10]|, the absolute value of CAR 6 days and 10 days after the issue date, for column 

(2); CAR[1,5]+, CAR 1 day and 5 days after the issue date when positive 0 otherwise, for column (3); 

CAR[6,10]+, CAR 6 day and 10 days after the issue date when positive 0 otherwise, for column (4);  CAR[1,5]−, 

CAR 1 day and 5 days after the issue date when negative 0 otherwise, for column (5); CAR[6,10]−, CAR 6 day 

and 10 days after the issue date when negative 0 otherwise, for column (6). �̂�, empirical proxy for ρ, is the 

correlation of signed Amihud (2002)’s illiquidity measures of options and those of the underlying stock. All the 

other variables are defined in Appendix A. The symbols, *, **, and ***, indicates that the regression 

coefficients are significantly different from zero at the 10%, 5%, and 1% confidence level, respectively. t-

statictics are reported in parentheses. Year and industry fixed effects are included in all the analyses. Standard 

errors are clustered at the industry level. 

Dependent (1) (2) (3) (4) (5) (6) 

Variables |CAR[1,5]| |CAR[6,10]|  CAR[1,5]+ CAR[6,10]+ CAR[1,5]− CAR[6,10]−  

       

�̂� -0.046*** -0.048*** -0.012 -0.029* 0.034*** 0.019 

 (-4.13) (-3.44) (-1.33) (-1.84) (3.39) (1.47) 

Discount 0.006 0.005 0.025 -0.030 0.019 -0.035 

 (0.17) (0.08) (0.78) (-0.84) (0.47) (-0.43) 

OLev -0.004 -0.009*** -0.000 -0.004 0.003 0.005 

 (-0.94) (-3.15) (-0.10) (-1.64) (1.25) (1.54) 

Volm 0.491* 0.288 0.037 0.263* -0.455*** -0.025 

 (1.90) (1.30) (0.17) (1.76) (-3.16) (-0.11) 

OVolm 0.005* 0.005 0.003 0.006 -0.002 0.001 

 (1.98) (1.07) (0.84) (1.21) (-0.69) (0.19) 

Size -0.002 -0.002 0.002 -0.003 0.004** -0.000 

 (-0.97) (-1.10) (1.14) (-1.67) (2.34) (-0.09) 

MTB 0.001 0.001 -0.000 0.001 -0.002 -0.001 

 (0.77) (1.14) (-0.31) (0.31) (-0.92) (-0.64) 

STD 0.483*** 0.491*** -0.044 -0.196** -0.527*** -0.687*** 

 (3.73) (3.53) (-0.79) (-2.71) (-4.10) (-4.07) 

Amihud 0.002 0.005 0.002 0.010 0.001 0.005 

 (0.19) (0.34) (0.26) (1.11) (0.10) (0.55) 

NYSE 0.002 0.010** 0.000 0.000 -0.001 -0.010** 

 (0.44) (2.54) (0.11) (0.07) (-0.40) (-2.26) 

ARPR 0.008*** 0.003 -0.001 -0.009*** -0.009** -0.012*** 

 (3.06) (0.70) (-0.45) (-4.45) (-2.53) (-3.72) 

CAR[-5,-1] -0.004 -0.019 0.018 0.055*** 0.022 0.073** 
 (-0.16) (-0.53) (1.48) (3.46) (1.31) (2.35) 

OCAR[-5,-1] -0.001 0.003 -0.004 -0.003 -0.003 -0.006 

 (-0.23) (0.80) (-1.24) (-1.20) (-1.08) (-1.32) 

PRIM 0.002 -0.002 -0.001 -0.009*** -0.002 -0.007 

 (0.40) (-0.33) (-0.19) (-2.86) (-0.86) (-1.64) 

ACCEL 0.002 0.001 -0.006** -0.003 -0.007** -0.004 

 (0.44) (0.27) (-2.39) (-0.83) (-2.65) (-1.10) 

RelOfrSize 0.009 0.005 0.033 -0.007 0.024** -0.012 

 (0.50) (0.23) (1.65) (-0.68) (2.53) (-0.48) 

Price -0.003 0.004 -0.008*** -0.001 -0.006** -0.006 

 (-0.83) (1.53) (-4.04) (-0.36) (-2.18) (-1.60) 

Price_Cluster 0.003 -0.003 0.004* -0.001 0.002 0.002 

 (1.02) (-0.52) (1.96) (-0.24) (1.06) (0.58) 

LockUp -0.001 -0.000 0.001 0.005 0.002 0.005 

 (-0.21) (-0.02) (0.18) (1.13) (0.36) (0.85) 

NumIssue 0.000 0.000 0.000 -0.000 -0.000 -0.000 
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 (0.52) (0.02) (0.13) (-0.47) (-0.37) (-0.37) 

Tangibility -0.001 -0.007 0.008* 0.005* 0.008** 0.012** 

 (-0.23) (-1.28) (1.84) (1.83) (2.38) (2.58) 

BA_Spread 0.128 0.289 0.128 0.199 -0.000 -0.090 

 (0.87) (1.49) (0.89) (1.10) (-0.00) (-0.32) 

| ARs | -0.028 -0.021 -0.024 -0.006 0.005 0.015 

 (-0.90) (-1.44) (-0.83) (-0.33) (0.45) (1.13) 

| ARo | 0.007 0.006 -0.000 -0.004 -0.008 -0.011* 

 (0.78) (1.37) (-0.07) (-0.72) (-0.81) (-1.73) 

rIPO 0.011 0.016 -0.003 0.002 -0.014* -0.013 

 (1.37) (1.06) (-0.59) (0.18) (-1.82) (-0.69) 

nIPO -0.016 -0.013 -0.016 -0.009 0.000 0.005 

 (-1.14) (-0.66) (-1.24) (-0.91) (0.01) (0.22) 

Constant 0.135*** 0.066** 0.067*** 0.097*** -0.068** 0.031 

 (6.11) (2.59) (3.05) (3.01) (-2.12) (1.21) 

       

Observations 1,155 1,155 1,155 1,155 1,155 1,155 

Adj. R2 0.225 0.223 0.047 0.094 0.147 0.145 
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Table 7 Long-term performance after SEOs 

 

This table presents the results of Ordinary Least Squares (OLS) regression for long-term performance after 

SEOs on �̂�. The sample period is 1996 to 2013, containing 1,155 SEOs. The dependent variable is Buy-and-hold 

return (BHR) after SEOs; MBHAR, 6 months and 1 year BHR adjusted to Size-and-BTM matched firm for 

column (1) and (2), respectively; VWBHAR, 6 months and 1 year BHR adjusted to Fama-French 25 Size-and-

BTM portfolio for column (3) and (4), respectively; BHR, 6 months and 1 year for column (5) and (6), 

respectively. �̂�, empirical proxy for ρ, is the correlation of signed Amihud (2002)’s illiquidity measures of 

options and those of the underlying stock. All the other variables are defined in Appendix A. The symbols, *, **, 

and ***, indicates that the regression coefficients are significantly different from zero at the 10%, 5%, and 1% 

confidence level, respectively. t-statictics are reported in parentheses. Year and industry fixed effects are 

included in all the analyses. Standard errors are clustered at the industry level. 

 (1) (2) (3) (4) (5) (6) 

Dependent 

Variables 

MBHAR MBHAR VWBHAR VWBHAR BHR BHR 

0.5 Year 1 Year 0.5 Year 1 Year 0.5 Year 1 Year 

       

�̂� -0.553** -0.690*** -0.330*** -0.236* -0.318*** -0.213* 

 (-2.46) (-3.57) (-3.39) (-1.73) (-3.41) (-1.71) 

Discount 0.456 0.254 0.246 0.206 0.165 0.104 

 (1.02) (0.40) (0.53) (0.33) (0.34) (0.16) 

OLev 0.029 0.108** 0.072** 0.140*** 0.066* 0.130*** 

 (0.81) (2.15) (2.30) (3.98) (1.90) (3.36) 

Volm -0.618 -0.697 0.180 0.540 -0.388 0.437 

 (-0.43) (-0.39) (0.14) (0.31) (-0.28) (0.22) 

OVolm 0.025 -0.044 0.032 0.012 0.033 0.008 

 (0.57) (-0.70) (1.01) (0.27) (0.97) (0.16) 

Size -0.003 0.005 0.015 0.011 0.032 0.026 

 (-0.11) (0.13) (0.72) (0.32) (1.46) (0.76) 

MTB -0.004 -0.006 -0.030* -0.061** -0.044** -0.075*** 

 (-0.24) (-0.18) (-1.93) (-2.50) (-2.67) (-3.02) 

STD 0.991 0.606 1.752* 0.173 2.774*** 0.036 

 (1.08) (0.60) (1.74) (0.12) (3.90) (0.02) 

Amihud 0.051 0.052 0.177 0.112 0.117 0.054 

 (0.34) (0.31) (1.53) (0.61) (0.98) (0.28) 

NYSE 0.068 0.111* 0.007 0.061 0.004 0.073 

 (1.55) (1.93) (0.21) (1.30) (0.12) (1.46) 

ARPR 0.045 0.104 0.063 0.079* 0.058 0.060 

 (0.83) (1.58) (1.62) (1.90) (1.59) (1.37) 

CAR[-5,-1] 0.013 -0.255 -0.173 -0.558*** -0.208 -0.578*** 

 (0.07) (-1.21) (-1.43) (-3.20) (-1.61) (-2.96) 

OCAR[-5,-1] -0.045 -0.034 -0.003 0.003 -0.006 -0.016 

 (-1.12) (-0.75) (-0.09) (0.10) (-0.17) (-0.45) 

PRIM 0.007 0.004 0.024 -0.008 0.013 -0.019 

 (0.14) (0.06) (0.73) (-0.17) (0.39) (-0.37) 

ACCEL -0.042 -0.048 -0.027 -0.026 -0.037 -0.024 

 (-0.92) (-1.06) (-0.81) (-0.62) (-0.94) (-0.54) 

RelOfrSize 0.073 -0.025 0.139 0.043 0.174 0.100 

 (0.35) (-0.09) (0.89) (0.16) (0.97) (0.35) 

Price -0.005 0.038 -0.066** -0.040 -0.076** -0.025 

 (-0.13) (0.78) (-2.30) (-1.19) (-2.43) (-0.61) 

Price_Cluster -0.068*** -0.081 -0.063* -0.077 -0.072* -0.080 

 (-2.95) (-1.39) (-1.85) (-1.30) (-1.99) (-1.41) 

LockUp 0.051 0.011 0.060 0.042 0.082* 0.051 

 (0.92) (0.10) (1.26) (0.55) (1.72) (0.63) 

NumIssue -0.002 -0.001 0.004 0.016 0.006 0.017 

 (-0.16) (-0.08) (0.61) (1.50) (0.79) (1.45) 

Tangibility 0.048 0.096 0.050 0.122*** 0.058* 0.137*** 
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 (0.87) (1.25) (1.48) (3.04) (1.69) (3.66) 

BA_Spread -1.019 -1.116 -4.083*** -3.911* -4.286*** -3.200 

 (-0.68) (-0.30) (-4.11) (-1.96) (-4.06) (-1.59) 

| ARs | -0.220 -0.045 -0.245 -0.247 -0.261 -0.234 

 (-0.95) (-0.13) (-1.61) (-1.04) (-1.61) (-0.95) 

| ARo | 0.052 -0.048 -0.086* -0.128 -0.100 -0.138 

 (0.65) (-0.36) (-1.69) (-1.56) (-1.64) (-1.65) 

rIPO 0.025 -0.152 0.101 -0.090 0.172 -0.208 

 (0.13) (-0.68) (0.75) (-0.75) (1.05) (-1.50) 

nIPO -0.113 -0.394 0.092 -0.205 0.005 -0.716*** 

 (-0.85) (-1.07) (0.98) (-1.09) (0.06) (-3.64) 

Constant 0.248 0.383 0.184 0.366 0.369 0.815** 

 (0.80) (0.66) (0.87) (1.09) (1.64) (2.22) 

       

Observations 1,155 1,155 1,155 1,155 1,155 1,155 

Adj. R2 0.004 0.021 0.079 0.115 0.201 0.251 
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Table 8 Leverage effect 

 

This table presents the results of Ordinary Least Squares (OLS) regression for SEO discount on �̂� and its 

interaction with option leverage (OLev). The sample period is 1996 to 2013, containing 1,155 SEOs. The 

dependent variable is Discount, defined as the logarithm of the ratio of closing stock price 1 day prior to the 

issuance to the offer price. �̂�, empirical proxy for ρ, is the correlation of signed Amihud (2002)’s illiquidity 

measures of options and those of the underlying stock. Other correlation measures are similarly defined; the 

return correlation (�̂�r) for column (2), the signed Amihud correlation using raw trading volume (�̂�v) for column 

(3), the signed Amihud correlation with call options (�̂�c) for column (4), and the signed Amihud correlation with 

put options (�̂�p) for column (5). All the other variables are defined in Appendix A. Control variables are 

included in the analysis, but not reported. The symbols, *, **, and ***, indicates that the regression coefficients 

are significantly different from zero at the 10%, 5%, and 1% confidence level, respectively. t-statictics are 

reported in parentheses. Year and industry fixed effects are included in all the analyses. Standard errors are 

clustered at the industry level. 

 (1)  (2) (3) (4) (5) 

  �̂�r �̂�𝐯 �̂�c �̂�p 

      

ρ̂ -0.171*** -0.143*** -0.066*** -0.137*** -0.100*** 

 (-5.99) (-4.69) (-3.11) (-3.00) (-3.43) 

OLev -0.073*** -0.065*** -0.027** -0.113** -0.101*** 

 (-3.80) (-3.57) (-2.22) (-2.17) (-3.06) 

x �̂� 0.077*** 0.067*** 0.034** 0.129** 0.108*** 

 (3.88) (3.52) (2.42) (2.26) (2.88) 

Amihud 0.014 0.014 0.015 0.014 0.016 

 (1.31) (1.26) (1.20) (1.31) (1.42) 

      

Controls Yes Yes Yes Yes Yes 

Observations 1,155 1,155 1,155 1,155 1,155 

Adj. R2 0.205 0.192 0.191 0.194 0.198 
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Table 9 Liquidity 

 

This table presents the results of Ordinary Least Squares (OLS) regression for SEO discount on �̂� and its 

interaction with Amihud. The sample period is 1996 to 2013, containing 1,155 SEOs. The dependent variable is 

Discount, defined as the logarithm of the ratio of closing stock price 1 day prior to the issuance to the offer price. 

�̂�, empirical proxy for ρ, is the correlation of signed Amihud (2002)’s illiquidity measures of options and those 

of the underlying stock. Other correlation measures are similarly defined; the return correlation (�̂�r) for column 

(2), the signed Amihud correlation using raw trading volume (�̂�v) for column (3), the signed Amihud correlation 

with call options (�̂�c) for column (4), and the signed Amihud correlation with put options (�̂�p) for column (5). 

All the other variables are defined in Appendix A. Control variables are included in the analysis, but not 

reported. The symbols, *, **, and ***, indicates that the regression coefficients are significantly different from 

zero at the 10%, 5%, and 1% confidence level, respectively. t-statictics are reported in parentheses. Year and 

industry fixed effects are included in all the analyses. Standard errors are clustered at the industry level. 

 (1)  (2) (3) (4) (5) 

  �̂�r �̂�𝐯 �̂�c �̂�p 

      

ρ̂ -0.015 0.001 -0.008 -0.007 -0.003 

 (-0.53) (0.02) (-0.89) (-0.25) (-0.13) 

Amihud 0.205* 0.211* 0.038 0.140* 0.180 

 (1.71) (1.81) (1.61) (1.83) (1.48) 

x �̂� -0.209 -0.214* -0.031* -0.144* -0.187 

 (-1.65) (-1.78) (-1.76) (-1.79) (-1.46) 

OLev -0.001 -0.001 -0.001 0.001 -0.006 

 (-0.34) (-0.35) (-0.24) (0.18) (-0.89) 

      

Controls Yes Yes Yes Yes Yes 

Observations 1,155 1,155 1,155 1,155 1,155 

Adj. R2 0.202 0.193 0.186 0.193 0.196 
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Table 10 Robustness test (Endogeneity control) 

 

This table presents the results of Ordinary Least Squares (OLS) regression for SEO discount and post-issue 

performance, after controlling endogeneity of the variables. The sample period is 1996 to 2013, containing 

1,155 SEOs. The dependent variables are defined in top of each columns. All the other variables are defined in 

Appendix A. First-stage regression results are not reported. The symbols, *, **, and ***, indicates that the 

regression coefficients are significantly different from zero at the 10%, 5%, and 1% confidence level, 

respectively. t-statictics are reported in parentheses. Year and industry fixed effects are included in all the 

analyses. Standard errors are clustered at the industry level. 

 (1) (2) (3) (4) (5) (6) 

 Discount |CAR[1,5]| |CAR[6,10]| MBHAR 

0.5 Year 

VWBHAR 

0.5 Year 

BHR 

0.5 Year 

       

�̂�𝒆 -0.048*** -0.044*** -0.043*** -0.558** -0.375* -0.362*** 

 (-6.82) (-4.12) (-2.99) (-2.42) (-1.90) (-3.40) 

Discount  0.015 0.028 0.387 0.024 -0.044 

  (0.44) (0.37) (0.86) (0.07) (-0.09) 

OLev -0.005* -0.011*** -0.019*** 0.031 0.107*** 0.094*** 

 (-1.74) (-2.83) (-5.56) (1.02) (2.94) (2.96) 

Volm 0.224* 0.799*** 0.647** -0.345 -0.208 -0.254 

 (2.01) (2.73) (2.60) (-0.24) (-0.24) (-0.22) 

OVolm 0.000 0.006** 0.006 0.025 0.038 0.039 

 (0.15) (2.35) (1.18) (0.54) (0.97) (1.10) 

Size 0.001 -0.002 -0.003 -0.010 0.008 0.025 

 (0.55) (-1.43) (-1.32) (-0.35) (0.59) (1.07) 

MTB 0.001 0.004** 0.003*** 0.005 -0.018 -0.034** 

 (0.30) (2.28) (2.92) (0.30) (-0.83) (-2.33) 

Amihud 0.024** 0.012 0.020 0.053 0.122 0.078 

 (2.05) (1.23) (1.54) (0.35) (1.49) (0.68) 

NYSE 0.000 0.000 0.007* 0.079* 0.027 0.022 

 (0.10) (0.09) (1.80) (1.97) (0.91) (0.71) 

PreCAR[-5,-1] 0.015 -0.010 -0.024 -0.008 -0.143 -0.178 

 (0.69) (-0.44) (-0.66) (-0.04) (-1.40) (-1.66) 

PreOCAR[-5,-1] -0.005* -0.000 0.003 -0.041 0.003 0.002 

 (-1.93) (-0.12) (0.80) (-1.01) (0.10) (0.05) 

PRIM 0.006* 0.002 -0.001 0.006 0.028 0.021 

 (1.70) (0.44) (-0.19) (0.13) (0.56) (0.60) 

ACCEL 0.017*** 0.001 -0.000 -0.051 -0.033 -0.044 

 (5.32) (0.14) (-0.01) (-1.09) (-1.58) (-1.12) 

RelOfrSize 0.031 0.012 0.007 0.097 0.129 0.153 

 (1.15) (0.66) (0.34) (0.48) (0.71) (0.76) 

Price -0.012*** -0.003 0.003 0.001 -0.039 -0.052 

 (-4.40) (-0.97) (0.88) (0.03) (-1.01) (-1.62) 

Price_Cluster 0.013*** 0.004 -0.001 -0.066** -0.065 -0.072* 

 (7.00) (1.48) (-0.30) (-2.71) (-1.27) (-1.81) 

Constant 0.073*** 0.114*** 0.056*** -0.237 -0.189 -0.009 

 (3.27) (9.72) (3.47) (-1.04) (-1.20) (-0.03) 

       

Observations 1,155 1,155 1,155 1,155 1,155 1,155 

Adj. R2 0.175 0.191 0.189 0.007 0.065 0.187 
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Table 11 Calendar Time portfolio 

 

This table presents the results of calander-time portfolio (Fama (1998)) analysis. The sample period is 1996 to 

2013, containing 1,155 SEOs. For each monthly portfolio, the firms issuing new shares prior to 6 months are 

included. rhigh includes the firms in the upper 50% �̂� group and rlow includes the firms in the lower 50% �̂� 

group. The dependent variables are defined in top of each columns. MKTRT is market-portfolio return, SMB is 

small-minus-big size portfolio, HML is high-minus-low BTM portfolio, and UMD is up minus down portfoilo 

return from Kenneth R. French’s website. The symbols, *, **, and ***, indicates that the regression coefficients 

are significantly different from zero at the 10%, 5%, and 1% confidence level, respectively. t-statictics are 

reported in parentheses. 

 (1) (2) (3) (4) (5) 

 rhigh rlow rhigh rlow rhigh - rlow 

      

α -1.043*** -0.046 -1.171*** 0.042 -1.213*** 

  (-3.13) (-0.12) (-3.54) (0.11) (-2.75) 

MKTRT 1.359*** 1.499*** 1.435*** 1.447*** -0.011 

  (18.49) (17.27) (18.65) (15.72) (-0.11) 

SMB 0.758*** 0.897*** 0.728*** 0.918*** -0.190 

  (7.56) (7.58) (7.34) (7.74) (-1.44) 

HML -0.477*** -0.079 -0.419*** -0.118 -0.300** 

  (-4.53) (-0.64) (-3.97) (-0.94) (-2.14) 

UMD   0.182*** -0.124 0.306*** 

   (2.88) (-1.64) (3.63) 

      

Observations 218 218 218 218 218 

Adj. R2 0.741 0.688 0.749 0.691 0.079 
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Table 12 Robustness test  

 

This table presents the results of Ordinary Least Squares (OLS) regression for SEO discount and post-issue 

performance, for other correlation measures. The sample period is 1996 to 2013, containing 1,155 SEOs. The 

dependent variables are defined in top of each columns. All the other variables are defined in Appendix A. 

Control variables are included in the analysis, but not reported. The symbols, *, **, and ***, indicates that the 

regression coefficients are significantly different from zero at the 10%, 5%, and 1% confidence level, 

respectively. t-statictics are reported in parentheses. Year and industry fixed effects are included in all the 

analyses. Standard errors are clustered at the industry level. 

Panel A. Discount and pre-issue market reaction 

 (1) (2) (3) (4) 
 Discount Discount Discount Discount 

�̂�r �̂�𝐯 �̂�c �̂�p 

     

Correlation 0.046** 0.016 0.008 0.032 

 (2.17) (0.93) (0.29) (1.54) 

|CAR[-5,-1]| 0.758*** 0.228* 0.374 0.478*** 

 (5.13) (1.78) (1.68) (2.72) 

x Correlation -0.859*** -0.394** -0.487* -0.622*** 

 (-5.26) (-2.20) (-1.86) (-3.01) 

     

Controls Yes Yes Yes Yes 

Observations 1,155 1,155 1,155 1,155 

Adj. R2 0.203 0.200 0.197 0.207 

 

Panel B. Short-term performance 

 (1) (2) (3) (4) (5) (6) (7) (8) 
 |CAR[1,5]| |CAR[1,5]| |CAR[1,5]| |CAR[1,5]| |CAR[6,10]| |CAR[6,10]| |CAR[6,10]| |CAR[6,10]| 

�̂�r �̂�𝐯 �̂�c �̂�p �̂�r �̂�𝐯 �̂�c �̂�p 

         

Correlation -0.040*** -0.013 -0.041** -0.022 -0.040** -0.010 -0.045 -0.029** 

 (-4.64) (-1.69) (-2.64) (-1.13) (-2.36) (-1.11) (-1.50) (-2.68) 

         

Controls Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 1,155 1,155 1,155 1,155 1,155 1,155 1,155 1,155 

Adj. R2 0.223 0.220 0.224 0.220 0.221 0.219 0.222 0.221 

 

Panel C. Long-run performance 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 MBHAR MBHAR MBHAR MBHAR VWBHAR VWBHAR VWBHAR VWBHAR 

0.5 Year 0.5 Year 0.5 Year 0.5 Year 0.5 Year 0.5 Year 0.5 Year 0.5 Year 

 �̂�r �̂�𝐯 �̂�c �̂�p �̂�r �̂�𝐯 �̂�c �̂�p 

         

Correlation -0.602** -0.139 -0.391* -0.171 -0.393*** -0.130** -0.288*** -0.152** 

 (-2.38) (-1.00) (-1.91) (-0.95) (-2.91) (-2.03) (-2.80) (-2.69) 

         

Controls Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 1,155 1,155 1,155 1,155 1,155 1,155 1,155 1,155 

Adj. R2 0.005 -0.002 0.001 -0.002 0.080 0.077 0.078 0.076 

 


